
Artificial Intelligence

Blai Bonet

Universidad Simón Boĺıvar, Caracas, Venezuela

AND/OR search

c© 2019 Blai Bonet

Motivation: 12 coins

Consider the following problem:

There are 12 coins one of which is counterfeit with a weight that is
different from the others. You need to determine which coin is counterfeit
and whether it is heavier or lighter

You are given a balance scale to find the counterfeit coin and
determine its relative weight in a minimum number of weights

How do you solve it?

How many weights are needed?

[Image from http://exchange.smarttech.com]

c© 2019 Blai Bonet

Decomposition in 12-coins problem

Previous problem is example of a decomposition task in which the
problem needs to be decomposed into subproblems

Represent knowledge about coins by tuple (s, ls, hs, u) where:

– s+ ls+ hs+ u = 12

– s is number of coins known to be of standard weight

– ls is number of coins known to be lighter or of standard weight

– hs is number of coins known to be heavier or of standard weight

– u is number of coins known to be of completely unknown weight

Each weigh on the balance then produces one or more outcomes

Problem contains non-deterministic actions

c© 2019 Blai Bonet

http://exchange.smarttech.com


Decomposition in 12-coins problem

States for 12-coins of the form (s, ls, hs, u)

Initial state (0, 0, 0, 12) reflects complete ignorance on the coins

Action that puts 4 unknown coins on each plate may produce:

– (8, 0, 0, 4) if the plates perfectly level on the balance

– (4, 4, 4, 0) if the plates don’t level on the balance

The solution is a strategy that tells how to weigh the coins for each
possible outcome of the actions

The 12-coins problems can be solved with 3 weighs!

c© 2019 Blai Bonet

Solution form

Solutions for AND/OR models are strategies rather than linear
sequences of actions

Strategies can be compared on different grounds (optimality criteria is
not unique)

Model for 12-coins is acyclic but there are AND/OR problems with
cyclic state spaces

Different solution concepts define the set of valid solutions

c© 2019 Blai Bonet

Intuition for AND/OR graphs

Depending on the task, nodes in AND/OR graphs may represent:

– Subproblems to be solved

– Current state of the model

– Knowledge about current state

AND/OR graphs are used to represent problems in which tasks can be
decomposed into different substasks on problems in which actions
may have non-deterministic effects

c© 2019 Blai Bonet

General AND/OR model

Formally, an AND/OR graph is a directed hypegraph

Each edge has a source vertex and k ≥ 1 destination vertices; edges
are called k-connectors

If all edges are 1-connectors, the AND/OR graph is a regular graph

Each k-connector C = (n0, {n1, . . . , nk}) has cost cost(C). We say:

– n0 is a parent of each ni

– each ni is a child of n0

– C leaves n0 and enters each ni

c© 2019 Blai Bonet



General AND/OR model

Vertices without children are terminal vertices and without parents
root vertices

If every vertex has at most one parent and there is just one root, the
graph is an AND/OR tree

If there is no sequence of vertices (n0, n1, . . . , nk) such that ni is
parent of ni+1, 0 ≤ i < k, and n0 = nk, the graph is acyclic

c© 2019 Blai Bonet

General AND/OR model

Formally, and AND/OR graph is tuple (V,E, T, n0, cost) where:

– V is a set of vertices

– E is a set of connectors

– T ⊆ V is a set of terminal vertices

– n0 ∈ V is an initial vertex

– cost : T ∪ E → R is the cost function

c© 2019 Blai Bonet

Example of AND/OR model

– Vertices V = {n0, n1, . . . , n8}

– Terminals T = {n7, n8}

– Edges: E = {(n0, {n1}), (n0, {n4, n5}), (n1, {n2}), (n1, {n3}), (n2, {n3}),
(n2, {n4, n5}), (n3, {n5, n6}), (n4, {n5}), (n4, {n8}), (n5, {n7, n8}),
(n6, {n7, n8})}

n0

n1
n2

n4

n3 n5

n6 n8

n7

c© 2019 Blai Bonet

Solutions

Let G = (V,E, T, n0, cost) be AND/OR model

A solution for vertex n is subgraph S = (V ′, E′, T ′, n, cost′):

– V ′ ⊆ V , E′ ⊆ E, and cost′ is cost restricted to T ′ ∪ E′

– each terminal vertex in S belongs to T (i.e. T ′ ⊆ T )

– for each n in V ′ \ T , there is exactly one connector in E′ that
leaves n

A solution for G is a solution for vertex n0

Remark: if all connectors are 1-connectors, solution S is a path in G
from vertex n to some vertex in T

c© 2019 Blai Bonet



Examples of solutions

n0

n1
n2

n4

n3 n5

n6 n8

n7

c© 2019 Blai Bonet

Examples of solutions

n0

n1
n2

n4

n3 n5

n6 n8

n7

c© 2019 Blai Bonet

Examples of solutions

n0

n1
n2

n4

n3 n5

n6 n8

n7

c© 2019 Blai Bonet

Costs for acyclic solutions

Let G = (V,E, T, n0, cost) be AND/OR model

Let S = (V ′, E′, T ′, n, cost′) be acyclic solution for vertex n

We define cost(n′, S) for n′ ∈ V ′ inductively:

– for terminal vertices n′ ∈ T ′: cost(n′, S) = cost′(n′)

– for non-terminal vertices n′ ∈ V ′ \ T ′:

cost(n′, S) = cost′(C) +
∑k

i=1 cost(ni, S)

where C = (n′, {n1, . . . , nk}) is unique connector in E′ leaving n′

Finally, cost(S) is defined as cost(n, S)

c© 2019 Blai Bonet



AO* algorithm

AO* is a best-first algorithm for finding optimal solutions in implicit
and acyclic AND/OR graphs

AO* maintains the best partial solution seen so far until it becomes
a complete solution

Like A*, AO* constructs an explicit graph as the implicit graph is
explored; the explicit graph is called the “explicated graph”

AO* uses heuristic h that is assumed to be admissible and consistent:

– for every terminal vertex n ∈ T , h(n) = cost(n)

– for every non-terminal vertex n ∈ V \ T , and every connector
C = (n, {n1, n2, . . . , nk}) that leaves n:

h(n) ≤ cost(C) +
∑k

i=1 h(ni)

c© 2019 Blai Bonet

AO*: pseudocode

1. Make explicit graph GE with only n0; associate cost q(n0) = h(n0)

2. While n0 is not marked as SOLVED do:

2.1 Traverse best partial solution S in GE by following marked connectors
at each vertex. (Connectors get marked below)

2.2 Select vertex n in S that is leaf (tip) and isn’t SOLVED

2.3 Expand n. Add all successors n′ to GE. For each child n′, associate
cost q(n′) = h(n′) and marked as SOLVED if n′ is terminal

2.4 Make set R = {n} of vertices to revise

2.5 While R 6= ∅ do:

2.5.1 Select (and remove) vertex m ∈ R that has no descendant in R. (It
can be done since graph is acyclic)

2.5.2 Revise cost q(m) associated with m (see next slide)

2.5.3 If m is marked as SOLVED or its cost q(m) changes, add to R all
parents of m through marked connectors

c© 2019 Blai Bonet

Revise cost in AO*

Consider vertex m in R such that m has no descendant in R

To revise cost of vertex m:

– If m is terminal, marked it as SOLVED and terminate

– For each connector C = (m, {n1, n2, . . . , nk}) that leaves m, compute

q(C) = cost(C) +
∑k

i=1 q(ni). (The values q(ni) were computed in this
interation (of outer loop) or previous iteration of this loop)

– Select connector C∗ with minimum q-value. Assign q(m) = q(C∗).
Mark connector C∗ and erase marks on any other connector leaving m

– If all vertices “entered” by C∗ are SOLVED, mark m as SOLVED

– If no connector leaves m, assign q(m) a very high cost denoting that no
solution exists below m

c© 2019 Blai Bonet

Example of AO*

Consider previous example and let cost of k-connector be k

Use heuristic h given by:

– h(n0) = 0

– h(n1) = 2

– h(n2) = h(n3) = 4

– h(n4) = h(n5) = 1

– h(n6) = 2

– h(n7) = h(n8) = 0

Terminal costs equal to 0

c© 2019 Blai Bonet



Example of AO*

n0

n1

n4

n5

n2

n3

n8

n7

n q(n)

n0 0
n1 0
n2 0
n3 0
n4 0
n5 0
n6 0
n7 0
n8 0

c© 2019 Blai Bonet

Example of AO*

n0

n1

n4

n5

n2

n3

n8

n7

n q(n)

n0 3
n1 2
n2 0
n3 0
n4 1
n5 1
n6 0

c© 2019 Blai Bonet

Example of AO*

n0

n1

n4

n5

n2

n3

n8

n7

n q(n)

n0 4
n1 5
n2 4
n3 4
n4 1
n5 1
n6 0

c© 2019 Blai Bonet

Example of AO*

n0

n1

n4

n5

n2

n3

n8

n7

n q(n)

n0 5
n1 5
n2 4
n3 4
n4 1
n5 2
n6 0
n7 0
n8 0

c© 2019 Blai Bonet



Example of AO*

n0

n1

n4

n5

n2

n3

n8

n7

n q(n)

n0 5
n1 5
n2 4
n3 4
n4 1
n5 2
n6 0
n7 0
n8 0

c© 2019 Blai Bonet

Summary

I 12-coins problem

I General AND/OR model and solutions

I AO* algorithm

c© 2019 Blai Bonet


