
Artificial Intelligence

Blai Bonet

Universidad Simón Boĺıvar, Caracas, Venezuela

Constraint satisfaction problems (CSPs)

c© 2019 Blai Bonet

Goals for the lecture

I Constraint satisfaction problem (CSP)

I Types of CSPs and constraints

I Translation of CSPs

I Backtracking algorithms with heuristics for variable selection

I Inference: forward checking, arc consistency

I Solving CSPs by pure inference

c© 2019 Blai Bonet

Informal description

CSP is assignment problem defined by:

– a set of variables with domains

– a set of constraints

Task: find assignment of variables to values that satisfy all
constraints

c© 2019 Blai Bonet

Example: Map coloring

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Formal model

CSP is given by tuple (X ,D, C) where:

– X = {X1, . . . , Xn} is finite set of variables

– D = {D1, . . . , Dn} is set of domains, domain Di for variable Xi

– C = {C1, . . . , Cm} is set of constraints that specify allowable
combinations of values

Each constraint C is pair 〈scope, R〉 where scope is tuple over X that
specifies the variables involved in C, and R ⊆∏

Xi∈scopeDi defines
the allowable combinations for variables in scope

E.g., if X and Y are binary variables with domain {0, 1}, the
constraint 〈(X,Y), {(0, 1), (1, 0)}〉 expresses X 6= Y

c© 2019 Blai Bonet

Formulation of map coloring

I Variables X = {WA,NT,Q,NSW, V, SA, T}

I Domains for all variables given by colors red, blue and green

I For each two variables X and Y connected by edge, there is a
contraint with scope (X,Y) and the relation that requires that the
colors of X and Y must be different:

{(red, blue), (red, green), (blue, red), (blue, green), (green, red), (green, blue)}

c© 2019 Blai Bonet

Solving CSPs by search

CSPs can be solved by performing search on the space of partial
assignments of variables to values:

– initial state is empty assignment

– goal states are complete assignments that satisfy all constraints

– successor function extends partial assignment with new variable,
provided that resulting assignment is consistent (i.e. doesn’t violate
a constraint)

– uniform costs

If there are n variables, all goal states (if any) appear at depth n

IDA* is discarded. DFBnB could be considered but there are no
meaningful heuristics since all costs are equal. We’ll do a depth-first
traversal but extended with some form of “inference” to prune
branches in search tree

c© 2019 Blai Bonet

Alternative model for (local) search

Another search space is obtained by considering only complete
assignments instead of partial ones

Edges connect assignment that differ in the assignment for one or
more variables (typically just 1 variable)

Initial state is any assignment while goal states correspond to
assignments that satisfy all constraints

Formulation used by local search methods that in some cases are
very effecive but incomplete

c© 2019 Blai Bonet

Example: Cryptoarithmetic

Section 6.1. Defining Constraint Satisfaction Problems 207

(a)

OWTF U R

(b)

+

F

T

T

O

W

W

U

O

O

R

C3 C1C2

Figure 6.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as
well as the column addition constraints (four square boxes in the middle). The variables C1,
C2, and C3 represent the carry digits for the three columns.

one binary constraint for each pair of constraints in the original graph that share variables. For
example, if the original graph has variables {X,Y,Z} and constraints ⟨(X,Y,Z), C1⟩ and
⟨(X,Y), C2⟩ then the dual graph would have variables {C1, C2} with the binary constraint
⟨(X,Y), R1⟩, where (X,Y) are the shared variables and R1 is a new relation that defines the
constraint between the shared variables, as specified by the original C1 and C2.

There are however two reasons why we might prefer a global constraint such as Alldiff
rather than a set of binary constraints. First, it is easier and less error-prone to write the
problem description using Alldiff . Second, it is possible to design special-purpose inference
algorithms for global constraints that are not available for a set of more primitive constraints.
We describe these inference algorithms in Section 6.2.5.

The constraints we have described so far have all been absolute constraints, violation of
which rules out a potential solution. Many real-world CSPs include preference constraintsPREFERENCE

CONSTRAINTS

indicating which solutions are preferred. For example, in a university class-scheduling prob-
lem there are absolute constraints that no professor can teach two classes at the same time.
But we also may allow preference constraints: Prof. R might prefer teaching in the morning,
whereas Prof. N prefers teaching in the afternoon. A schedule that has Prof. R teaching at
2 p.m. would still be an allowable solution (unless Prof. R happens to be the department chair)
but would not be an optimal one. Preference constraints can often be encoded as costs on in-
dividual variable assignments—for example, assigning an afternoon slot for Prof. R costs
2 points against the overall objective function, whereas a morning slot costs 1. With this
formulation, CSPs with preferences can be solved with optimization search methods, either
path-based or local. We call such a problem a constraint optimization problem, or COP.

CONSTRAINT

OPTIMIZATION

PROBLEM

Linear programming problems do this kind of optimization.

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Example: 8-Queens

Place 8 queens in an empty chess board in a way that no queen
attacks another

Can it be done?

Section 6.4. Local Search for CSPs 221

function MIN-CONFLICTS(csp,max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max steps do

if current is a solution for csp then return current
var ← a randomly chosen conflicted variable from csp.VARIABLES

value ← the value v for var that minimizes CONFLICTS(var , v , current , csp)
set var = value in current

return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial
state may be chosen randomly or by a greedy assignment process that chooses a minimal-
conflict value for each variable in turn. The CONFLICTS function counts the number of
constraints violated by a particular value, given the rest of the current assignment.

2

2

1

2

3

1

2

3

3

2

3

2

3

0

Figure 6.9 A two-step solution using min-conflicts for an 8-queens problem. At each
stage, a queen is chosen for reassignment in its column. The number of conflicts (in this
case, the number of attacking queens) is shown in each square. The algorithm moves the
queen to the min-conflicts square, breaking ties randomly.

heuristic. The algorithm is shown in Figure 6.8 and its application to an 8-queens problem is
diagrammed in Figure 6.9.

Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens
problem, if you don’t count the initial placement of queens, the run time of min-conflicts is
roughly independent of problem size. It solves even the million-queens problem in an aver-
age of 50 steps (after the initial assignment). This remarkable observation was the stimulus
leading to a great deal of research in the 1990s on local search and the distinction between
easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens is
easy for local search because solutions are densely distributed throughout the state space.
Min-conflicts also works well for hard problems. For example, it has been used to schedule
observations for the Hubble Space Telescope, reducing the time taken to schedule a week of
observations from three weeks (!) to around 10 minutes.

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

CSP Variations

Simplest CSPs have finite and discrete domains

Infinite discrete domains can be considered, but constraints cannot be
represented explicitly and constraint languages are used

Continuous domains such as real values can also be considered

Some special cases:

I Real-valued variables with linear constraints (e.g. X + 3Y ≤ Z) can be
solved efficiently with linear programming

I Integer-valued variables with linear constraints can be solved using
integer programming methods (intractable in worst case)

I Special cases like real-valued variables with convex constraints

c© 2019 Blai Bonet

Constraint types and constraint graph

A constraint whose scope is singleton is unary constraint

A binary constraint relates two variables (scope size is 2)

A constraint of order k relates k variables; for k > 2, it is a
higher-order constraint

Constraint graph for CSP (X ,D, C) is (undirected) graph with
vertices given by X and edges (Xi, Xj) iff there is a constraint whose
scope contains i and j

c© 2019 Blai Bonet

CSP with binary constraints

Any CSP P = (X ,D, C) can be mapped into equivalent CSP
P ′ = (X ′,D′, C′) with X ′ ⊇ X (i.e. with possibly more variables)
but with binary constraints

Equivalent means:

– any solution for P can be extended into a solution for P ′

– any solution for P ′ corresponds to a solution for P (i.e. if ν is a
solution for P ′, then its projection ν|X over X is a solution for P)

c© 2019 Blai Bonet

Mapping CSPs to binary CSPs

For P = (X ,D, C) with n vars and m constraints, define P ′ = (X ′,D′, C′):

I X ′ = {X ′
i : Xi ∈ X} ∪ {Xn+j : 1 ≤ j ≤ m} (one new var per constr.)

I Domains for original vars: D′
i = Di ∩ ∩{Rj : scopej = (Xi)}, i = 1 . . . n

I Domains for new vars: D′
n+j = Rj , j = 1 . . .m (var X ′

n+j has domain
given by tuples permitted by constraint Cj : D

′
n+j ⊆ ΠXi∈scopejDi)

I Binary constraints: for each (i, j) such that Xi ∈ scopej , add constraint
C ′
i,j = 〈scope′i,j , R

′
i,j〉 where:

– scope′i,j = (X ′
i, X

′
n+j)

– R′
i,j = {(xi, t) ∈ D′

i ×D′
n+j : t[Xi] = xi}

c© 2019 Blai Bonet

Example: Mapping CSP to binary CSP

Problem P with variables X = {X1, X2, X3} over domain D = {0, 1, 2} and
two constraints: X3 = X1 +X2 mod 3, and X2 +X3 ≥ 1

Transformed problem is P ′ = (X ′ = {X ′
i : 1 ≤ i ≤ 5},D′, C′) where

– D′i = D for i = 1, 2, 3

– D′4 = {(x1, x2, x3) ∈ D3 : x3 = x1 + x2 mod 3}

– D′5 = {(x2, x3) ∈ D2 : x2 + x3 ≥ 1}

– C′14=〈(X ′1, X ′4), R′14〉 with R′14={(x1, (x1, x2, x3)) : x1∈D, (x1, x2, x3)∈D′4}

– C′24=〈(X ′2, X ′4), R′24〉 with R′24={(x2, (x1, x2, x3)) : x2∈D, (x1, x2, x3)∈D′4}

– C′34=〈(X ′3, X ′4), R′34〉 with R′34={(x3, (x1, x2, x3)) : x3∈D, (x1, x2, x3)∈D′4}

– C′25=〈(X ′2, X ′5), R′25〉 with R′25={(x2, (x2, x3)) : x2∈D, (x2, x3)∈D′5}

– C′35=〈(X ′3, X ′5), R′35〉 with R′35={(x3, (x2, x3)) : x3∈D, (x2, x3)∈D′5}

c© 2019 Blai Bonet

Example: Sudoku

Section 6.2. Constraint Propagation: Inference in CSPs 213

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

4 8 9 1 5 7

6 7 4 8 2

2 5 7 9 3

5 4 3 7 6

2 9 5 6 4 1 3

1 3 9 4 5

3 7 8 1 4

1 4 5 7 6

6 9 4 7 8 2

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

 I

A

B

C

D

E

F

G

H

 I

1 2 3 4 5 6 7 8 9

(a) (b)

Figure 6.4 (a) A Sudoku puzzle and (b) its solution.

Alldiff constraints: one for each row, column, and box of 9 squares.

Alldiff (A1, A2, A3, A4, A5, A6, A7, A8, A9)
Alldiff (B1, B2, B3, B4, B5, B6, B7, B8, B9)
· · ·
Alldiff (A1, B1, C1,D1, E1, F1, G1,H1, I1)
Alldiff (A2, B2, C2,D2, E2, F2, G2,H2, I2)
· · ·
Alldiff (A1, A2, A3, B1, B2, B3, C1, C2, C3)
Alldiff (A4, A5, A6, B4, B5, B6, C4, C5, C6)
· · ·

Let us see how far arc consistency can take us. Assume that the Alldiff constraints have been
expanded into binary constraints (such as A1 ̸= A2) so that we can apply the AC-3 algorithm
directly. Consider variable E6 from Figure 6.4(a)—the empty square between the 2 and the
8 in the middle box. From the constraints in the box, we can remove not only 2 and 8 but also
1 and 7 from E6 ’s domain. From the constraints in its column, we can eliminate 5, 6, 2, 8,
9, and 3. That leaves E6 with a domain of {4}; in other words, we know the answer for E6 .
Now consider variable I6—the square in the bottom middle box surrounded by 1, 3, and 3.
Applying arc consistency in its column, we eliminate 5, 6, 2, 4 (since we now know E6 must
be 4), 8, 9, and 3. We eliminate 1 by arc consistency with I5 , and we are left with only the
value 7 in the domain of I6 . Now there are 8 known values in column 6, so arc consistency
can infer that A6 must be 1. Inference continues along these lines, and eventually, AC-3 can
solve the entire puzzle—all the variables have their domains reduced to a single value, as
shown in Figure 6.4(b).

Of course, Sudoku would soon lose its appeal if every puzzle could be solved by a

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Naive backtracking algorithm

For given node n, children of n correspond to different extensions
with one variable of the assignment associated to n

1 naive-backtrack(assignment A, csp P)
2 if A is complete assignment then return A
3

4 foreach variable X unassigned by A
5 foreach value in domain of X
6 if X = value is consistent with A wrt P
7 A’ := A union { X = value }
8 result := naive-backtrack(A’, P)
9 if result != FAIL then return result

10

11 return FAIL

For n variables and d = maxi |Di|, branching factor at root is O(nd),
at second level O((n− 1)d), etc. Total number of leaves is O(n!dn),
yet number of assignments is only O(dn)

c© 2019 Blai Bonet

Basic backtracking algorithm

For given node n, children of n correspond to the different values for
fixed unassigned variable

1 backtrack(assignment A, csp P)
2 if A is complete assignment then return A
3

4 X := select-unassigned-variable(A, P)
5 foreach value in domain of X
6 if X = value is consistent with A wrt P
7 A’ := A union { X = value }
8 result := backtrack(A’, P)
9 if result != FAIL then return result

10

11 return FAIL

Branching factor is O(d), where d = maxi |Di|. With n variables,
number of leaves is O(dn) and equal to number of assignments

c© 2019 Blai Bonet

Example: Backtracking

216 Chapter 6. Constraint Satisfaction Problems

WA=red WA=blueWA=green

WA=red

NT=blue

WA=red

NT=green

WA=red

NT=green

Q=red

WA=red

NT=green

Q=blue

Figure 6.6 Part of the search tree for the map-coloring problem in Figure 6.1.

2. What inferences should be performed at each step in the search (INFERENCE)?
3. When the search arrives at an assignment that violates a constraint, can the search avoid

repeating this failure?

The subsections that follow answer each of these questions in turn.

6.3.1 Variable and value ordering

The backtracking algorithm contains the line

var ← SELECT-UNASSIGNED-VARIABLE(csp) .

The simplest strategy for SELECT-UNASSIGNED-VARIABLE is to choose the next unassigned
variable in order, {X1,X2, . . .}. This static variable ordering seldom results in the most effi-
cient search. For example, after the assignments for WA= red and NT = green in Figure 6.6,
there is only one possible value for SA, so it makes sense to assign SA= blue next rather than
assigning Q. In fact, after SA is assigned, the choices for Q, NSW , and V are all forced. This
intuitive idea—choosing the variable with the fewest “legal” values—is called the minimum-
remaining-values (MRV) heuristic. It also has been called the “most constrained variable” orMINIMUM-

REMAINING-VALUES

“fail-first” heuristic, the latter because it picks a variable that is most likely to cause a failure
soon, thereby pruning the search tree. If some variable X has no legal values left, the MRV
heuristic will select X and failure will be detected immediately—avoiding pointless searches
through other variables. The MRV heuristic usually performs better than a random or static
ordering, sometimes by a factor of 1,000 or more, although the results vary widely depending
on the problem.

The MRV heuristic doesn’t help at all in choosing the first region to color in Australia,
because initially every region has three legal colors. In this case, the degree heuristic comesDEGREE HEURISTIC

in handy. It attempts to reduce the branching factor on future choices by selecting the vari-
able that is involved in the largest number of constraints on other unassigned variables. In
Figure 6.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3,
except for T , which has degree 0. In fact, once SA is chosen, applying the degree heuris-
tic solves the problem without any false steps—you can choose any consistent color at each
choice point and still arrive at a solution with no backtracking. The minimum-remaining-

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Critical issues when implementing solution

I Which variable should be chosen at each node? How should its
values be ordered for the recursion?

I What are the implications of current assignment for still unassigned
variables?

I When branch fails, can the search avoid repeating the failure in
next branches?

c© 2019 Blai Bonet

Variable ordering

Idea is to choose the most constrained variable in order to detect a
failure (backtrack) as soon as possible

It is better to fail high on a branch than deep. Heuristic is called
MRV (Minimum Remaining Values), Most Constrained Variable,
or “fail-first”

Another idea is to choose variable involved in most constraints. It can
be combined with MRV as a tie-breaker:

If two variables have the same number of remaining values (MRV
criterion), prefer the one involved in more constraints

c© 2019 Blai Bonet

Value ordering

Once a variable is selected, its values must be ordered

Least-constraining value is an effective heuristic:

Prefer values that rule out fewest values for neighbor variables
in constraint graph

Motivation is that once a variable is fixed, the algorithm should try to
find a solution as fast as possible

c© 2019 Blai Bonet

Combining search with inference

We can solve a CSP by either:

– perform pure search with the backtracking algorithm

– perform pure inference (as shown later)

Both methods are correct but do not scale up to big problems

State-of-the-art solvers combine search and limited but efficient
forms of inference in order to reduce the search space

c© 2019 Blai Bonet

Forward checking

Each node in search tree keeps current domains for unassigned
variables

Whenever variable Xi is assigned, FC looks at each unassigned
variable Xj that is connected to Xi by a constraint, and deletes from
Dj all values that are inconsistent with value chosen for Xi

Partner of MRV heuristic: select the next variable to assign as one
with smallest current domain

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable selection with MRV heuristic

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After SA = R RGB RGB RGB RGB RGB RGB RGB
After NT = G RGB RGB RGB RGB RGB RGB RGB
After Q = B RGB RGB RGB RGB RGB RGB RGB
After NSW = G RGB RGB RGB RGB RGB RGB RGB
After WA = B RGB RGB RGB RGB RGB RGB RGB
After V = B RGB RGB RGB RGB RGB RGB RGB
After T = R RGB RGB RGB RGB RGB RGB RGB

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA = R, Q = G, . . .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA = R RGB RGB RGB RGB RGB RGB RGB
After Q = G RGB RGB RGB RGB RGB RGB RGB
After V = B RGB RGB RGB RGB RGB — RGB

***** BACKTRACK *****

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA = R, Q = G, . . .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA = R RGB RGB RGB RGB RGB RGB RGB
After Q = G RGB RGB RGB RGB RGB RGB RGB
After V = R RGB RGB RGB RGB RGB RGB RGB
After NT = B RGB RGB RGB RGB RGB — RGB

***** BACKTRACK *****

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA = R, Q = G, . . .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA = R RGB RGB RGB RGB RGB RGB RGB
After Q = G RGB RGB RGB RGB RGB RGB RGB
After V = G RGB RGB RGB RGB RGB RGB RGB
After T = R RGB RGB RGB RGB RGB RGB RGB
After NT = B RGB RGB RGB RGB RGB — RGB

***** BACKTRACK *****

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA = R, Q = G, . . .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA = R RGB RGB RGB RGB RGB RGB RGB
After Q = G RGB RGB RGB RGB RGB RGB RGB
After V = G RGB RGB RGB RGB RGB RGB RGB
After T = G RGB RGB RGB RGB RGB RGB RGB
After NT = B RGB RGB RGB RGB RGB — RGB

***** BACKTRACK *****

c© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA = R, Q = G, . . .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

WA NT Q NSW V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA = R RGB RGB RGB RGB RGB RGB RGB
After Q = G RGB RGB RGB RGB RGB RGB RGB
After V = G RGB RGB RGB RGB RGB RGB RGB
After T = B RGB RGB RGB RGB RGB RGB RGB
After NT = B RGB RGB RGB RGB RGB — RGB

***** BACKTRACK *****

c© 2019 Blai Bonet

Chronological and non-chronological backtracking

When search reaches terminal node that doesn’t correspond to
complete assignment (i.e. conflict node), the search backtracks to
most recent decision point

Most recent decision point may not be reason for conflict

A better idea is to analyze the conflict and backtrack to most recent
decision point that caused the conflict

Such backtracking is called non-chronological conflict-based
backtracking and also conflict-directed backjumping

c© 2019 Blai Bonet

Constraint propagation: Arc consistency

Arc consistency is a property of CSPs:

I CSP P = (X ,D, C) is arc consistent iff for each pair of variables Xi and
Xj connected in constraint graph, the arc (Xi, Xj) is consistent in P

I Arc (Xi, Xj) is consistent in P iff for each value xi of Xi, there exists a
value xj of Xj such that the partial assignment (Xi = xi, Xj = xj) is
consistent with all constraints (i.e. it doesn’t violate any constraint)

For each satisfiable CSP P , there is a CSP P ′ equivalent to P and with the
same variables as P that is arc consistent

An algorithm for arc consistency transforms P into equivalent P ′ or detects
that P has no solution. There are many such algorithms

c© 2019 Blai Bonet

Arc consistency: AC3

1 bool AC3(csp P)
2 Queue Q
3 Insert in Q all arcs (X,Y) in constraint graph
4 while Q is not empty
5 Let (X,Y) := Q.pop()
6 if reduce-arc(X,Y)
7 if Domain[X] == ∅ then return false
8 foreach Z such that (Z,X) is edge in constraint graph
9 Insert arc (Z,X) in Q

10 return true
11

12 bool reduce-arc(variable X, variable Y)
13 removed := false
14 foreach x in Domain[X]
15 found := false
16 foreach y in Domain[Y]
17 if (X=x,Y=y) satisfies all constraints between X and Y
18 found := true
19 break
20 if not found
21 Remove x from Domain[X]
22 removed := true
23 return removed

c© 2019 Blai Bonet

Analysis of AC3

Consider CSP P = (X ,D, C) with n variables, and let d = maxi |Di|:

I Time for reduce-arc(X,Y) is O(d2) assuming that takes constant
time to check whether partial assignment (X = x, Y = y) is
consistent with all constraints

I There are O(n2) initial insertions in the queue

I Arc (Z,X) is re-inserted when a value of X is removed. Since
there are O(d) values for X, arc (Z,X) is re-inserted O(d) times

I Number of iterations bounded by O(n2 + n2d) = O(n2d)

I Total time is O(n2d3)

c© 2019 Blai Bonet

Combining search with AC3

Two ways of combining search with AC3:

– Before search starts: make CSP arc-consistent and then do search

– During search: enforce arc consistency at each node during search
(known as Maintaining Arc Consistency or MAC)

First option is enough in easy problems while the second is necessary
for difficult ones

c© 2019 Blai Bonet

AC4: Keep track of supports

Algorithm for arc consistency that runs in time O(n2d2) which is
optimal since lower bound Ω(n2d2) holds

Idea:

– Keep counters n(i, x, j) for each constraint with scope {Xi, Xj}
and value x ∈ Di that stores number of values of Xj that are
consistent with Xi = x

– Use queue to track values X = x that have lost support

– Revise counters efficiently

c© 2019 Blai Bonet

Arc consistency: AC4

1 bool AC4(csp P)
2 Queue Q
3

4 % initialization
5 Calculate value of counters n(X,x,Y). If n(X,x,Y) = 0,
6 remove x from Domain[X] and enqueue pair (X,x)
7

8 while Q is not empty
9 Let (X,x) := Q.pop()

10

11 if Domain[X] is empty then
12 return false % CSP has no solution
13

14 % value x was removed from Domain[X]
15 foreach (Z,X)
16 foreach z in Domain[Z]
17 if (Z=z,X=x) is consistent then
18 Decrement counter n(Z,z,X)
19 if n(Z,z,X) == 0 then
20 Remove z from Domain[Z]
21 Enqueue (Z,z) in Q
22 return true

c© 2019 Blai Bonet

Analysis of AC4

Consider CSP P = (X ,D, C) with n variables, and let d = maxi |Di|:

I Time for initialization is O(n2d2)

I Time of inner loop is O(nd)

I Pair (X,x) is added to queue when value x is removed from DX .
Maximum number of pairs in Q is thus O(nd)

I Total time is O(n2d2 + n2d2) = O(n2d2)

c© 2019 Blai Bonet

Inference for CSPs

Solving CSPs is NP-hard (in general case)

We show how to solve CSPs using pure inference

Along the way, we identify tractable subclasses of CSPs that are
solved in polynomial time

c© 2019 Blai Bonet

High-order consistency

Arc consistency can be generalized to k-consistency

CSP P is k-consistent iff for any set of k − 1 variables and each
consistent assignment for them, the assignment can be consistently
extended over any other variable

Under this definition:

– P is 1-consistent iff for each variable X and each unary constraint
C for X, there is value x for X that satisfies C

– P is 2-consistent iff P is arc consistent

– . . .

P is strongly k-consistent iff it is i-consistent for i = 1, 2, . . . , k

c© 2019 Blai Bonet

Example: 3-consistency

X ∈ {r, g, b} Z ∈ {r, g}

Y ∈ {r, g, b}

6= 6=

6=

– (Arc) 2-consistent: each assignment of single variable can be
extended into assignment for 2 variables

– Not 3-consistent: consistent assignment [X = r, Y = g] cannot
be extended to Z

c© 2019 Blai Bonet

Establishing k-consistency (naive algorithm)

1 bool k-consistency(csp P)
2 change := true
3 while change
4 change := false
5 foreach subset S of k-1 variables
6 foreach variable X not in S
7 change := change || k-revise(S,X)
8

9 if domain of some variable is empty then
10 return false
11 else
12 return true
13

14 bool k-revise(S,X)
15 change := false
16 foreach consistent valuation v of S
17 if there is no value x for X such that {v,X=x} is consistent
18 Mark valuation v as forbidden
19 change := true
20 return change

c© 2019 Blai Bonet

Remarks on establishing k-consistency

Forbidden valuations (also called no-goods) are recorded (filtered) in
existing constraints or stored in memory

If there is no constraint in which forbidden (partial) valuation ν can
be filtered, algorithm discovers implied constraint

If CSP has only binary constraints, after establishing k-consistency
new constraints of order k − 1 may appear

Establishing k-consistency takes time O((2nd)2k) where n is number
of variables and d is maximum cardinality of domains

k-consistency does not imply j-consistency for j < k

c© 2019 Blai Bonet

Example: Implied constraints

X ∈ {r, g, b} Z ∈ {r, g}

Y ∈ {r, g, b}

6= 6=

6=

– (Arc) 2-consistent: each assignment of single variable can be
extended into assignment for 2 variables

– Not 3-consistent: consistent assignment [X = r, Y = g] cannot
be extended to Z

– Implied constraint: X = b ∨ Y = b

c© 2019 Blai Bonet

Solving CSPs by pure inference

Let P = (X ,D, C) be a CSP with n variables that is strongly n-consistent

The following backtrack-free algorithm finds a solution for P or determines
P has no solution

1. Let X1, X2, . . . , Xn be order for variables (any order will do), and let ν
be empty partial assignment

2. If domain of X1 is empty, return FAILURE

3. For i = 1, 2, . . . , n:

– Select value xi for Xi that is consistent with partial valuation ν

– Extend partial valuation ν with Xi = xi

4. Return valuation ν

c© 2019 Blai Bonet

Correctness of inference algorithm

We show that a value xi for Xi that is consistent with the current valuation
ν can be found for i = 1, 2, . . . , n (step 4):

– Claim is true for first iteration as ν is the empty valuation, the problem is
1-consistent, and D1 6= ∅

– Consider the (i+ 1)th iteration and let ν be current partial valuation at
beginning of (i+ 1)th iteration. By induction, ν is consistent

By strong n-consistency, problem is (i+ 1)-consistent. Therefore, any
consistent valuation for {X1, . . . , Xi}, like ν, can be extended into
consistent valuation for any other variable, like Xi+1

Then, there is a value xi+1 for Xi+1 that is consistent with ν and the
valuation can be extended with Xi+1 = xi+1

At the end ν is a complete and consistent assignment; i.e. ν is a solution

c© 2019 Blai Bonet

Strong consistency and existence of solutions

Let P = (X ,D, C) be a CSP with n variables

If P is strongly n-consistent and domain of some variable is
non-empty, P has solution

c© 2019 Blai Bonet

Tree structure

If constraint graph is tree, CSP can be solved in O(nd3) time

1. Designate any vertex in constraint graph as root and order the vertices
(variables) topologically so that each vertex appears in the order after
its parent (it can be done since graph is tree)

2. Enforce strong arc consistency in O(nd3) time (trees have O(n) edges)

3. If domain of first variable is empty, return FAILURE

4. Assign values from first to last variable in the order in backtrack-free
manner as before:

X1 can be assigned because the problem is 1-consistent and D1 6= ∅
At stage i+ 1 for Xi+1, variable Xi+1 has only one parent Xj with
j < i. Since problem is 2-consistent, current assignment can be
consistently extended with Xi+1 = xi+1 for some xi+1 ∈ Di+1

c© 2019 Blai Bonet

Topological sort of a tree

Section 6.5. The Structure of Problems 223

where d is the size of the domain. Hence, the total work is O(dcn/c), which is linear in n;
without the decomposition, the total work is O(dn), which is exponential in n. Let’s make
this more concrete: dividing a Boolean CSP with 80 variables into four subproblems reduces
the worst-case solution time from the lifetime of the universe down to less than a second.

Completely independent subproblems are delicious, then, but rare. Fortunately, some
other graph structures are also easy to solve. For example, a constraint graph is a tree when
any two variables are connected by only one path. We show that any tree-structured CSP can
be solved in time linear in the number of variables.4 The key is a new notion of consistency,
called directed arc consistency or DAC. A CSP is defined to be directed arc-consistent underDIRECTED ARC

CONSISTENCY

an ordering of variables X1,X2, . . . ,Xn if and only if every Xi is arc-consistent with each
Xj for j > i.

To solve a tree-structured CSP, first pick any variable to be the root of the tree, and
choose an ordering of the variables such that each variable appears after its parent in the tree.
Such an ordering is called a topological sort. Figure 6.10(a) shows a sample tree and (b)TOPOLOGICAL SORT

shows one possible ordering. Any tree with n nodes has n−1 arcs, so we can make this graph
directed arc-consistent in O(n) steps, each of which must compare up to d possible domain
values for two variables, for a total time of O(nd2). Once we have a directed arc-consistent
graph, we can just march down the list of variables and choose any remaining value. Since
each link from a parent to its child is arc consistent, we know that for any value we choose for
the parent, there will be a valid value left to choose for the child. That means we won’t have
to backtrack; we can move linearly through the variables. The complete algorithm is shown
in Figure 6.11.

A

C

B D

E

F
(a)

A CB D E F

(b)

Figure 6.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the
variables consistent with the tree with A as the root. This is known as a topological sort of
the variables.

Now that we have an efficient algorithm for trees, we can consider whether more general
constraint graphs can be reduced to trees somehow. There are two primary ways to do this,
one based on removing nodes and one based on collapsing nodes together.

The first approach involves assigning values to some variables so that the remaining
variables form a tree. Consider the constraint graph for Australia, shown again in Fig-
ure 6.12(a). If we could delete South Australia, the graph would become a tree, as in (b).
Fortunately, we can do this (in the graph, not the continent) by fixing a value for SA and

4 Sadly, very few regions of the world have tree-structured maps, although Sulawesi comes close.

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Improved algorithm for tree structure

We can improve algorithm by using directed arc consistency

CSP is directed arc consistent for order (X1, X2, . . . , Xn) iff every
arc (Xi, Xj) in constraint graph, for i < j, is consistent

1. Topologically order variables as before as (X1, X2, . . . , Xn)

2. (Make problem directed arc consistent.) For j = n to 2:

– If Xj has parent, Call reduce-arc(parent(X[j]), X[j]) to make
arc (parent(Xj), Xj) consistent

– If domain of parent(Xj) is empty, return FAILURE

3. (Construct valuation in backtrack-free manner.) For i = 1 to n:

– Select value xi for Xi that is consistent with assignment of
parent(Xi). This can be done because Xi has unique parent and
the directed arc consistency established in step 2

Analysis: each of the O(n) calls to reduce-arc() takes time O(d2).
The other steps are done in linear time. Total time is O(nd2)

c© 2019 Blai Bonet

Directional consistency

Strong n-consistency is more than what is actually needed as variables
are assigned along fixed variable ordering

Like improved algorithm for trees, we can enforce appropriate level of
consistency along fixed ordering

c© 2019 Blai Bonet

Width of CSPs

Let G = (V,E) be undirected graph and ≺ be order relation on V :

• ≺-width of vertex v: #edges into v from ≺-smaller vertices

• ≺-width of G: maximum ≺-width of vertex in G

• width of G: minimum ≺-width of G over all possible orderings ≺

Width of CSP P is width of its constraint graph

c© 2019 Blai Bonet

Improved inference algorithm

Let P = (X ,D, C) be CSP with constraint graph G

If P is strongly k-consistent, P has width < k, and all domains are
non-empty, then P has solution

1. Let X1, X2, . . . , Xn be ≺-ordering such that G has ≺-width ≤ k − 1

2. Let ν be empty valuation

3. If domain of X1 is empty, return FAILURE

4. For i = 1, 2, . . . , n:

– Select value xi for Xi that is consistent with partial valuation ν

– Extend partial valuation ν with Xi = xi

5. Return valuation ν

c© 2019 Blai Bonet

Remarks for improved inference algorithm

Requires strong k-consistency instead of strong n-consistency (k ≤ n)

Enforcing strong i-consistency on CSP P may increase width of P
since implied constraints become explicit

We want:

• Select variable ordering dynamically

• Adjust consistency of each node in adaptive way

• Handle increments of width in sound manner

c© 2019 Blai Bonet

Example: Adaptive consistency

C D

A

E

B

C

A

B

D

E

Ordering (E,D,C,A,B)

c© 2019 Blai Bonet

Dechter and Pearl’s adaptive consistency

Let P = (X ,D, C) be CSP and (X1, . . . , Xn) be ordering of X

1. For i = n, . . . , 1 do steps (2)–(5)

2. If domain Xi is empty, return FAILURE

3. Compute Parents(Xi) = {Xj : j < i and Xj is connected to Xi}

4. Add edges between all pairs of variables in Parents(Xi)

5. Perform consistency(Parents(Xi), Xi)

6. Find solution (or determine none exists) in backtrack-free manner
along order (X1, . . . , Xn)

Ordering doesn’t need to fixed a priori, a good ordering can be
discovered along execution; obtaining best ordering is NP-hard

c© 2019 Blai Bonet

Other approaches

I “Remove” variables until constraint graph becomes tree that can be
solved by algorithm for trees. This is called cutset conditioning

I Construct a tree decomposition of CSP made of independent
subproblems, solve each subproblem independently, and combine
solutions into global solution

c© 2019 Blai Bonet

Cutset conditioning

1. Choose set S of variables such that after their removal, the constraint
graph becomes a tree. S is called cycle cutset of constraint graph

2. For each valuation ν = νS of S, reduce P into Pν by instantiating
variables in S to values in ν

3. Solve Pν and return overall solution if found

4. If there is no valuation ν = νS such that Pν is solvable, return FAILURE

5. If |S| = c, reduced CSP can be solved in time O((n− c)d2) using
directed arc consistency. Since there are O(dc) valuations for S,
overall algorithm takes time O((n− c)d2+c)

There is no a priori bound on the size S of a minimum cycle cutset

Finding cycle cutset of minimum size is NP-hard

c© 2019 Blai Bonet

Cycle cutset in example

224 Chapter 6. Constraint Satisfaction Problems

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with components X, D, C

n ← number of variables in X
assignment ← an empty assignment
root ← any variable in X
X ← TOPOLOGICALSORT(X , root)
for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(Xj), Xj)
if it cannot be made consistent then return failure

for i = 1 to n do
assignment[Xi] ← any consistent value from Di

if there is no consistent value then return failure
return assignment

Figure 6.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the
CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

WA

NT

SA

Q

NSW

V

T

WA

NT

Q

NSW

V

T

(a) (b)

Figure 6.12 (a) The original constraint graph from Figure 6.1. (b) The constraint graph
after the removal of SA.

deleting from the domains of the other variables any values that are inconsistent with the
value chosen for SA.

Now, any solution for the CSP after SA and its constraints are removed will be con-
sistent with the value chosen for SA. (This works for binary CSPs; the situation is more
complicated with higher-order constraints.) Therefore, we can solve the remaining tree with
the algorithm given above and thus solve the whole problem. Of course, in the general case
(as opposed to map coloring), the value chosen for SA could be the wrong one, so we would
need to try each possible value. The general algorithm is as follows:

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Tree decomposition

Tree decomposition of CSP P = (X ,D, C) is collection of
subproblems where each subproblem, defined over subset of variables,
is such that:

– Each variable appears in at least one subproblem

– For each constraint C ∈ C, there is at least one subproblem whose
set of variables contains the scope of C

– Subproblems sharing variables are organized into tree structure

– If variable Xi appears in two subproblems, Xi then appears in each
subproblem along the unique path that connects both subproblems

c© 2019 Blai Bonet

Tree decomposition of example226 Chapter 6. Constraint Satisfaction Problems

T

WA

NT

SA

NT

SA

Q

SA

Q

NSW

SA NSW

V

Figure 6.13 A tree decomposition of the constraint graph in Figure 6.12(a).

decomposition of a graph is one less than the size of the largest subproblem; the tree width
of the graph itself is defined to be the minimum tree width among all its tree decompositions.
If a graph has tree width w and we are given the corresponding tree decomposition, then the
problem can be solved in O(ndw+1) time. Hence, CSPs with constraint graphs of bounded
tree width are solvable in polynomial time. Unfortunately, finding the decomposition with
minimal tree width is NP-hard, but there are heuristic methods that work well in practice.

So far, we have looked at the structure of the constraint graph. There can be important
structure in the values of variables as well. Consider the map-coloring problem with n colors.
For every consistent solution, there is actually a set of n! solutions formed by permuting the
color names. For example, on the Australia map we know that WA,NT , and SA must all have
different colors, but there are 3! = 6 ways to assign the three colors to these three regions.
This is called value symmetry. We would like to reduce the search space by a factor ofVALUE SYMMETRY

n! by breaking the symmetry. We do this by introducing a symmetry-breaking constraint.
SYMMETRY-

BREAKING

CONSTRAINT

For our example, we might impose an arbitrary ordering constraint, NT < SA < WA, that
requires the three values to be in alphabetical order. This constraint ensures that only one of
the n! solutions is possible: {NT = blue,SA = green ,WA = red}.

For map coloring, it was easy to find a constraint that eliminates the symmetry, and
in general it is possible to find constraints that eliminate all but one symmetric solution in
polynomial time, but it is NP-hard to eliminate all symmetry among intermediate sets of
values during search. In practice, breaking value symmetry has proved to be important and
effective on a wide range of problems.

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

c© 2019 Blai Bonet

Solving CSPs by tree decompositions

Given CSP P = (X ,D, C) and tree decomposition for P , construct new
binary CSP P ′ = (X ′,D′, C′) as follows:

– There is one variable for each subproblem in tree decomposition; the
ith subproblem corresponds to variable X ′

i

– Domain D′
i for variable X ′

i corresponds to all solutions of the ith
subproblem (ith subproblem is viewed as a reduced CSP)

– If ith and jth subproblems are connected (because they share at least one
variable), there is binary constraint in D′ with scope (X ′

i, X
′
j) and

relation given by all tuples (t′i, t
′
j) such that

– t′i ∈ D′
i and t′j ∈ D′

j

– t′i[Xk] = t′j [Xk] for every varaible Xk that appears in both subproblems
(i.e. solutions to subproblems must agree on shared variables)

c© 2019 Blai Bonet

Analysis

Let P = (X ,D, C) be CSP, T be tree decomposition for P with k
subproblems, and c be maximum subproblem size

– Constructing P ′ takes time O(kdc) as there are k subproblems and
each subproblem involves O(dc) valuations over its variables

– Problem P ′ has k variables, each domain has size O(dc), and P ′

has tree structure

– P ′ can be solved by directed arc consistency in time O(kd2c)

– Total time is thus O(kd2c)

There is no a priori bound on the maximum subproblem size

Finding best tree decomposition is NP-hard

c© 2019 Blai Bonet

Consistency and relational databases

1 bool reduce-arc(variable X, variable Y)
2 removed := false
3 foreach x in Domain[X]
4 found := false
5 foreach y in Domain[Y]
6 if (X=x,Y=y) satisfies all constraints between X and Y
7 found := true
8 break
9 if not found

10 Remove x from Domain[X]
11 removed := true
12 return removed

If RXY expresses all constraints between X and Y , reduce-arc(X,Y)
is equivalent to

DX := DX ∩ πX(RXY ./ DY)

where πX is projection on X, and ./ is relational join

c© 2019 Blai Bonet

Generalizing arc consistency

For non-binary constraints, arc consistency may be too weak

Example: for X1, X2, X3 ≥ 0, X3 ≥ 13, and X1 +X2 +X3 ≤ 15,
arc consistency is not able to infer X1 ≤ 2 and X2 ≤ 2

AC: DX := DX ∩ πX(RXY ./ DY)

Generalized AC: DX := DX ∩ πX(RS ./ DS\{X})

Relational AC: RS\{X} := RS\{X} ∩ πS\{X}(RS ./ DX)

where RS is constraint such that X ∈ S

– AC: no binary constraints, nothing inferred

– Generalized AC: X1 ≤ 2 and X2 ≤ 2

– Relational AC: X1 +X2 ≤ 2

c© 2019 Blai Bonet

Summary

I CSP is a fundamental problem in AI

I CSPs with binary constraints are universal

I CSPs are intractable in general

I CSPs can be solved by either pure search or pure inference

I Solving CSPs backtrack free after enforcing consistency

I Consistency and relational databases, and generalizations of AC

I State-of-the-art solvers = search + limited/efficient inference

c© 2019 Blai Bonet

