Artificial Intelligence

Blai Bonet

Universidad Simén Bolivar, Caracas, Venezuela

Constraint satisfaction problems (CSPs)

(© 2019 Blai Bonet

v

v

v

v

v

Goals for the lecture

Constraint satisfaction problem (CSP)
Types of CSPs and constraints

Translation of CSPs

Backtracking algorithms with heuristics for variable selection

Inference: forward checking, arc consistency

Solving CSPs by pure inference

(© 2019 Blai Bonet

Informal description

CSP is assignment problem defined by:

— a set of variables with domains

— a set of constraints

Task: find assignment of variables to values that satisfy all
constraints

(© 2019 Blai Bonet

Example: Map coloring

Northern @
Territory
Queensland

South
Australia

Western
Australia

Victoria

Tasmania @

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Formal model

CSP is given by tuple (X, D,C) where:
- X ={Xy,...,X,} is finite set of variables
- D={D,...,D,} is set of domains, domain D; for variable X;

- C={C1,...,Cy} is set of constraints that specify allowable
combinations of values

Each constraint C'is pair (scope, R) where scope is tuple over X that
specifies the variables involved in C, and R C HXZEscope D; defines
the allowable combinations for variables in scope

E.g., if X and Y are binary variables with domain {0,1}, the
constraint ((X,Y),{(0,1),(1,0)}) expresses X # Y

(© 2019 Blai Bonet

Formulation of map coloring

» Variables X = {WA,NT,Q, NSW,V,SA, T}
» Domains for all variables given by colors red, blue and green
» For each two variables X and Y connected by edge, there is a

contraint with scope (X,Y’) and the relation that requires that the
colors of X and Y must be different:

{(red, blue), (red, green), (blue, red), (blue, green), (green, red), (green, blue) }

(© 2019 Blai Bonet

Solving CSPs by search

CSPs can be solved by performing search on the space of partial
assignments of variables to values:

initial state is empty assignment

goal states are complete assignments that satisfy all constraints

successor function extends partial assignment with new variable,
provided that resulting assignment is consistent (i.e. doesn't violate
a constraint)

uniform costs

If there are n variables, all goal states (if any) appear at depth n

IDA* is discarded. DFBnB could be considered but there are no
meaningful heuristics since all costs are equal. We'll do a depth-first
traversal but extended with some form of “inference” to prune
branches in search tree

(© 2019 Blai Bonet

Alternative model for (local) search
Another search space is obtained by considering only complete
assignments instead of partial ones

Edges connect assignment that differ in the assignment for one or
more variables (typically just 1 variable)

Initial state is any assignment while goal states correspond to
assignments that satisfy all constraints

Formulation used by local search methods that in some cases are
very effecive but incomplete

(@© 2019 Blai Bonet

Example: Cryptoarithmetic

T W O
+ 7T W O

FOUR

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Example: 8-Queens

Place 8 queens in an empty chess board in a way that no queen
attacks another

Can it be done?

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

CSP Variations

Simplest CSPs have finite and discrete domains

Infinite discrete domains can be considered, but constraints cannot be
represented explicitly and constraint languages are used

Continuous domains such as real values can also be considered

Some special cases:

> Real-valued variables with linear constraints (e.g. X + 3Y < Z) can be
solved efficiently with linear programming

> Integer-valued variables with linear constraints can be solved using
integer programming methods (intractable in worst case)

» Special cases like real-valued variables with convex constraints

(© 2019 Blai Bonet

Constraint types and constraint graph

A constraint whose scope is singleton is unary constraint
A binary constraint relates two variables (scope size is 2)

A constraint of order k relates k variables; for kK > 2, it is a
higher-order constraint

Constraint graph for CSP (X, D, () is (undirected) graph with
vertices given by X" and edges (X;, X;) iff there is a constraint whose
scope contains ¢ and j

© 2019 Blai Bonet

CSP with binary constraints

Any CSP P = (X, D,(C) can be mapped into equivalent CSP
P = (X',D',C") with X’ DO X (i.e. with possibly more variables)
but with binary constraints

Equivalent means:

— any solution for P can be extended into a solution for P’

— any solution for P’ corresponds to a solution for P (i.e. if v is a
solution for P’, then its projection v|y over X is a solution for P)

(© 2019 Blai Bonet

Mapping CSPs to binary CSPs

For P = (X, D,C) with n vars and m constraints, define P’ = (X', D’,C’):
» X ={X]: X, e X}U{X,1;:1<j<m} (one new var per constr.)
» Domains for original vars: D} = D; N N{R; : scope; = (X;)},i=1...n

» Domains for new vars: D), .= R;, j=1...m (var X}, ; has domain

given by tuples permitted by constraint Cj: D;lﬂ- C ILx, escope, D)

» Binary constraints: for each (i, j) such that X; € scope;, add constraint
Cj ; = (scope; ;, R} ;) where:
- scope] ; = (X1, X))

- R, ={(z;,t) € D x Dy, y; + t[Xi] = a}

(© 2019 Blai Bonet

Example: Mapping CSP to binary CSP
Problem P with variables X = { X1, X3, X3} over domain D = {0, 1,2} and
two constraints: X3 = X; + Xs mod 3, and X5 + X3 >1
Transformed problem is P/ = (X' = {X/:1 <1 <5}, D',C’) where

- Dj=Dfori=1,2,3
- Dy = {(x1,22,23) € D* : 23 = &1 + 22 mod 3}

- Di = {(w2,23) € D* : w2 + 23 > 1}

- C14=((X1,X}4), Ri4) with Rl y={(z1, (z1,72,23)) : 71 €D, (z1,72,73) € D)}
- O =((X3,X4), Ray) with Ryy={(z2, (z1,72,23)) : :2€ D, (z1,72,73) € D} }
- Cf/’)4:<(Xé’X4,l)7Rl34> with R/34:{($3, (171,%2,(173)) : $3€D, (xl’x27x3)€D£l}

— C35={((X3, X5), Ras) with Rys={(x2, (x2,%3)) : 22 €D, (x2,73) € Dy}
- C35=((X3, X35), R35) with Ris={(xs, (z2,23)) : 23 €D, (22, 23) € D5}

(© 2019 Blai Bonet

Example: Sudoku

1 2 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
A 3 2 6 Al418[3]9]2]|1]6[5]7
Bl19 3 5 1 BI9[6[7]3[4[5]8]2]1
c 118 6]4 cl2(5[1)8[7[6]4]9(3
D 811 219 pi5(4[8)1[3[2]9]|7]6
El7 8 El7[2]9]5]16[4]1]3]|8
F 617 812 FI1[3]16]17]9[8]2]4]|5
G 216 915 a|3[7[2]6(8[9]|5]|1[4
H]8 2 3 9 HI8[1[4)12(5[3]7]|6/[9
! 5 1 3 11619514 [1]7]13[8]2

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Naive backtracking algorithm

For given node n, children of n correspond to different extensions
with one variable of the assignment associated to n

naive-backtrack(assignment A, csp P)
if A is complete assignment then return A

foreach variable X unassigned by A
foreach value in domain of X
if X = value is consistent with A wrt P

A’ := A union { X = value }
result := naive-backtrack(A’, P)
if result !'= FAIL then return result

return FAIL

For n variables and d = max; | D;|, branching factor at root is O(nd),
at second level O((n — 1)d), etc. Total number of leaves is O(n!d"),
yet number of assignments is only O(d™)

(© 2019 Blai Bonet

© 00 g O U s W N =

[
= o

Basic backtracking algorithm

For given node n, children of n correspond to the different values for
fixed unassigned variable

backtrack(assignment A, csp P)
if A is complete assignment then return A

X := select-unassigned-variable(A, P)
foreach value in domain of X
if X = value is consistent with A wrt P
A’ := A union { X = value }
result := backtrack(A’, P)
if result != FAIL then return result

return FAIL

Branching factor is O(d), where d = max; |D;|. With n variables,
number of leaves is O(d™) and equal to number of assignments

(© 2019 Blai Bonet

Example: Backtracking

WA=blue

WA=red WA=red
NT=green NT=blue
T
WA=red WA=red
NT=green NT=green
Q=red QO=blue
T T

[Image from Russell & Norvig. Atrtificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Critical issues when implementing solution

» Which variable should be chosen at each node? How should its
values be ordered for the recursion?

» What are the implications of current assignment for still unassigned
variables?

» When branch fails, can the search avoid repeating the failure in
next branches?

(© 2019 Blai Bonet

Variable ordering

Idea is to choose the most constrained variable in order to detect a
failure (backtrack) as soon as possible

It is better to fail high on a branch than deep. Heuristic is called
MRV (Minimum Remaining Values), Most Constrained Variable,
or “fail-first”

Another idea is to choose variable involved in most constraints. It can
be combined with MRV as a tie-breaker:

If two variables have the same number of remaining values (MRV
criterion), prefer the one involved in more constraints

(© 2019 Blai Bonet

Value ordering

Once a variable is selected, its values must be ordered

Least-constraining value is an effective heuristic:

Prefer values that rule out fewest values for neighbor variables
in constraint graph

Motivation is that once a variable is fixed, the algorithm should try to
find a solution as fast as possible

(© 2019 Blai Bonet

Combining search with inference

We can solve a CSP by either:
— perform pure search with the backtracking algorithm

— perform pure inference (as shown later)

Both methods are correct but do not scale up to big problems

State-of-the-art solvers combine search and limited but efficient
forms of inference in order to reduce the search space

(© 2019 Blai Bonet

Forward checking

Each node in search tree keeps current domains for unassigned

variables

Whenever variable X is assigned, FC looks at each unassigned
variable X; that is connected to X; by a constraint, and deletes from
Dj all values that are inconsistent with value chosen for X

Partner of MRV heuristic: select the next variable to assign as one

with smallest current domain

(© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable selection with MRV heuristic

@Z"o

o

WA NT Q NSW 'V SA T

Initial domains RGB RGB RGB RGB RGB RGB RGB
After SA=R GB GB GB GB GB R RGB
After NT =G B G B GB GB R RGB
After Q =B B G B G GB R RGB
After NSW =G B G B G B R RGB
After WA =B B G B G B R RGB
After V=B B G B G B R RGB
After T =R B G B G B R R

(© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA=R, Q =G, ...)
WA NT Q NSW V SA T
Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA=R R GB RGB RGB RGB GB RGB
After Q =G R B G R B RGB B RGB
After V =B R B G R B — RGB

66k BACKTRACK *¥%k*

(© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA=R, Q =G, ...)
WA NT @Q NSW V SA T
Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA=R R GB RGB RGB RGB GB RGB
After Q =G R B G R B RGB B RGB
After V =R R B G B R B RGB
After NT =B R B G B R — RGB

(© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA =R, Q =G, ...

o 1R

o
@
O,

WA NT @ NSW V

SA

Initial domains RGB RGB RGB RGB RGB RGB RGB
GB RGB
B RGB
B RGB

After WA=R R GB RGB RGB RGB
After @ =G R B G R B RGB
After V=G R B G B G
After T =R R B G B G
After NT=B R B G B G

(© 2019 Blai Bonet

Example: Backtracking with forward checking
Do
e L
(k4
O
O)

Variable/value selection: WA =R, Q =G, ...

WA NI @ NSW V SA T
Initial domains RGB RGB RGB RGB RGB RGB RGB

After WA=R R GB RGB RGB RGB GB RGB
After @ =G R B G R B RGB B RGB
After V=G R B G B G B RGB
After T =G R B G B G B G
After NT=B R B G B G — G

(© 2019 Blai Bonet

Example: Backtracking with forward checking

Variable/value selection: WA=R, Q =G, ...)
WA NT @Q NSW V SA T
Initial domains RGB RGB RGB RGB RGB RGB RGB
After WA=R R GB RGB RGB RGB GB RGB
After Q =G R B G R B RGB B RGB
After V =G R B G B G B RGB
After T' =B R B G B G B B
After NT =B R B G B G — B

(© 2019 Blai Bonet

Chronological and non-chronological backtracking

When search reaches terminal node that doesn’t correspond to
complete assignment (i.e. conflict node), the search backtracks to
most recent decision point

Most recent decision point may not be reason for conflict

A better idea is to analyze the conflict and backtrack to most recent
decision point that caused the conflict

Such backtracking is called non-chronological conflict-based
backtracking and also conflict-directed backjumping

(© 2019 Blai Bonet

Constraint propagation: Arc consistency

Arc consistency is a property of CSPs:

» CSP P = (X,D,C) is arc consistent iff for each pair of variables X; and
X connected in constraint graph, the arc (X;, X;) is consistent in P

» Arc (X;, X;) is consistent in P iff for each value x; of X;, there exists a
value x; of X; such that the partial assignment (X; = z;, X; = z;) is
consistent with all constraints (i.e. it doesn't violate any constraint)

For each satisfiable CSP P, there is a CSP P’ equivalent to P and with the
same variables as P that is arc consistent
An algorithm for arc consistency transforms P into equivalent P’ or detects

that P has no solution. There are many such algorithms

(© 2019 Blai Bonet

© 0 N DU e W N

=
= o

12
13
14
15
16
17
18
19
20
21
22

Arc consistency: AC3

bool AC3(csp P)
Queue Q
Insert in Q all arcs (X,Y) in constraint graph
while Q is not empty
Let (X,Y) := Q.pop()
if reduce-arc(X,Y)
if Domain[X] == @ then return false
foreach Z such that (Z,X) is edge in constraint graph
Insert arc (Z,X) in Q
return true

bool reduce-arc(variable X, variable Y)

removed := false
foreach x in Domain[X]
found := false

foreach y in Domain[Y]
if (X=x,Y=y) satisfies all constraints between X and Y
found := true
break
if not found
Remove x from Domain[X]
removed := true
return removed

(© 2019 Blai Bonet

Analysis of AC3

Consider CSP P = (X, D,C) with n variables, and let d = max; | D;|:

» Time for reduce-arc(X,Y) is O(d?) assuming that takes constant
time to check whether partial assignment (X =z,Y =1y) is
consistent with all constraints

» There are O(n?) initial insertions in the queue

» Arc (Z,X) is re-inserted when a value of X is removed. Since
there are O(d) values for X, arc (Z, X) is re-inserted O(d) times

» Number of iterations bounded by O(n? 4+ n?d) = O(n?d)

» Total time is O(n%d?)

(© 2019 Blai Bonet

Combining search with AC3

Two ways of combining search with AC3:
— Before search starts: make CSP arc-consistent and then do search

— During search: enforce arc consistency at each node during search
(known as Maintaining Arc Consistency or MAC)

First option is enough in easy problems while the second is necessary
for difficult ones

(© 2019 Blai Bonet

AC4: Keep track of supports

Algorithm for arc consistency that runs in time O(n?d?) which is
optimal since lower bound Q(n2d?) holds

ldea:

— Keep counters n(i, x, j) for each constraint with scope {X;, X}
and value x € D; that stores number of values of X; that are
consistent with X; = x

— Use queue to track values X = x that have lost support

— Revise counters efficiently

(© 2019 Blai Bonet

=
H O © 00 9 O Uk W N =

R I S
N = O ©®mNOo oA W N

Arc consistency: AC4

bool AC4(csp P)
Queue Q

% initialization
Calculate value of counters n(X,x,Y). If n(X,x,Y) =0,
remove x from Domain[X] and enqueue pair (X,Xx)

while Q is not empty
Let (X,x) := Q.pop()

if Domain[X] is empty then
return false % CSP has no solution
% value x was removed from Domain[X]
foreach (Z,X)
foreach z in Domain[Z]
if (Z=z,X=x) is consistent then
Decrement counter n(Z,z,X)
if n(Z,z,X) == 0 then
Remove z from Domain[Z]
Enqueue (Z,z) in Q
return true

(© 2019 Blai Bonet

Analysis of AC4

Consider CSP P = (X, D,C) with n variables, and let d = max; | D;|:
» Time for initialization is O(n2d?)

» Time of inner loop is O(nd)

v

Pair (X, x) is added to queue when value x is removed from Dx.
Maximum number of pairs in @ is thus O(nd)

v

Total time is O(n?d? + n?d?) = O(n*d?)

(© 2019 Blai Bonet

Inference for CSPs

Solving CSPs is NP-hard (in general case)
We show how to solve CSPs using pure inference

Along the way, we identify tractable subclasses of CSPs that are
solved in polynomial time

(© 2019 Blai Bonet

High-order consistency

Arc consistency can be generalized to k-consistency

CSP P is k-consistent iff for any set of k — 1 variables and each
consistent assignment for them, the assignment can be consistently
extended over any other variable

Under this definition:

— P is 1-consistent iff for each variable X and each unary constraint
C for X, there is value x for X that satisfies C'

— P is 2-consistent iff P is arc consistent

P is strongly k-consistent iff it is i-consistent for i =1,2,... k

(© 2019 Blai Bonet

Example: 3-consistency

Y € {r,g,0}

X € {r,g,b} 7

Z €{rg}

— (Arc) 2-consistent: each assignment of single variable can be
extended into assignment for 2 variables

— Not 3-consistent: consistent assignment [X = r,Y = g] cannot
be extended to Z

(© 2019 Blai Bonet

© 00 g O U s W N =

o e
N = O

Establishing k-consistency (naive algorithm)

bool k-consistency(csp P)
change := true
while change
change := false
foreach subset S of k-1 variables
foreach variable X not in S
change := change || k-revise(S,X)

if domain of some variable is empty then
return false

else
return true

bool k-revise(S,X)
change := false
foreach consistent valuation v of S
if there is no value x for X such that {v,X=x} is consistent
Mark valuation v as forbidden
change := true
return change

(© 2019 Blai Bonet

Remarks on establishing k-consistency

Forbidden valuations (also called no-goods) are recorded (filtered) in
existing constraints or stored in memory

If there is no constraint in which forbidden (partial) valuation v can
be filtered, algorithm discovers implied constraint

If CSP has only binary constraints, after establishing k-consistency
new constraints of order £k — 1 may appear

Establishing k-consistency takes time O((2nd)?*) where n is number
of variables and d is maximum cardinality of domains

k-consistency does not imply j-consistency for j < k

(© 2019 Blai Bonet

Example: Implied constraints

Y € {r,g,b}

4

X e {r,g,b} Z e{r,g}

— (Arc) 2-consistent: each assignment of single variable can be
extended into assignment for 2 variables

— Not 3-consistent: consistent assignment [X =, Y = g] cannot
be extended to Z

— Implied constraint: X =bV Y =b

© 2019 Blai Bonet

Solving CSPs by pure inference

Let P = (X,D,C) be a CSP with n variables that is strongly n-consistent

The following backtrack-free algorithm finds a solution for P or determines
P has no solution

1. Let Xy, Xs,..., X, be order for variables (any order will do), and let v
be empty partial assignment

2. If domain of X7 is empty, return FAILURE
3. Fori=1,2,...,n:

— Select value z; for X; that is consistent with partial valuation v

— Extend partial valuation v with X; = x;

4. Return valuation v

(© 2019 Blai Bonet

Correctness of inference algorithm

We show that a value x; for X; that is consistent with the current valuation
v can be found for i = 1,2,...,n (step 4):

— Claim is true for first iteration as v is the empty valuation, the problem is
1-consistent, and D; # ()

— Consider the (i + 1)th iteration and let v be current partial valuation at
beginning of (i + 1)th iteration. By induction, v is consistent

By strong n-consistency, problem is (i + 1)-consistent. Therefore, any
consistent valuation for {X7,..., X;}, like v, can be extended into
consistent valuation for any other variable, like X; 1

Then, there is a value z;11 for X, that is consistent with v and the
valuation can be extended with X; 1 = z;41

At the end v is a complete and consistent assignment; i.e. v is a solution

(© 2019 Blai Bonet

Strong consistency and existence of solutions

Let P = (X,D,C) be a CSP with n variables

If P is strongly n-consistent and domain of some variable is
non-empty, P has solution

(© 2019 Blai Bonet

Tree structure

If constraint graph is tree, CSP can be solved in O(nd®) time

1. Designate any vertex in constraint graph as root and order the vertices
(variables) topologically so that each vertex appears in the order after
its parent (it can be done since graph is tree)

2. Enforce strong arc consistency in O(nd?) time (trees have O(n) edges)
3. If domain of first variable is empty, return FAILURE

4. Assign values from first to last variable in the order in backtrack-free
manner as before:

X1 can be assigned because the problem is 1-consistent and Dy # ()

At stage i + 1 for X1, variable X; ;1 has only one parent X; with
j < i. Since problem is 2-consistent, current assignment can be
consistently extended with X1 = x;41 for some z;11 € D; 1

(© 2019 Blai Bonet

Topological sort of a tree

ze @z

(a) (b)

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Improved algorithm for tree structure

We can improve algorithm by using directed arc consistency

CSP is directed arc consistent for order (X1, Xo,...,X,,) iff every
arc (X;, X;) in constraint graph, for i < j, is consistent

1. Topologically order variables as before as (X1, Xo,..., X,,)

2. (Make problem directed arc consistent.) For j = n to 2:

— If X; has parent, Call reduce-arc(parent(X[jl), X[j]) to make
arc (parent(X;), X;) consistent
— If domain of parent(X) is empty, return FAILURE

3. (Construct valuation in backtrack-free manner.) For i =1 to n:

— Select value z; for X; that is consistent with assignment of
parent(X;). This can be done because X; has unique parent and
the directed arc consistency established in step 2

Analysis: each of the O(n) calls to reduce-arc() takes time O(d?).
The other steps are done in linear time. Total time is O(nd?)

(© 2019 Blai Bonet

Directional consistency

Strong n-consistency is more than what is actually needed as variables
are assigned along fixed variable ordering

Like improved algorithm for trees, we can enforce appropriate level of
consistency along fixed ordering

(© 2019 Blai Bonet

Width of CSPs

Let G = (V, E) be undirected graph and < be order relation on V:
e <-width of vertex v: #edges into v from <-smaller vertices
e <-width of G: maximum <-width of vertex in G

e width of G: minimum =<-width of G over all possible orderings <

Width of CSP P is width of its constraint graph

(© 2019 Blai Bonet

Improved inference algorithm

Let P = (X,D,C) be CSP with constraint graph G

If P is strongly k-consistent, P has width < k, and all domains are

non-empty, then P has solution

1. Let X1, Xo,...,X,, be <-ordering such that G has <-width < k —1

2. Let v be empty valuation
3. If domain of X7 is empty, return FAILURE
4

. Fori=1,2,... n:

— Select value z; for X; that is consistent with partial valuation v

— Extend partial valuation v with X; = x;

5. Return valuation v

(© 2019 Blai Bonet

Remarks for improved inference algorithm

Requires strong k-consistency instead of strong n-consistency (k < n)

Enforcing strong i-consistency on CSP P may increase width of P
since implied constraints become explicit

We want:
e Select variable ordering dynamically
e Adjust consistency of each node in adaptive way

e Handle increments of width in sound manner

(© 2019 Blai Bonet

Example: Adaptive consistency

Ordering (E,D,C, A, B)

(© 2019 Blai Bonet

Dechter and Pearl’s adaptive consistency

Let P = (X,D,C) be CSP and (Xy,...,X,) be ordering of X

1. Fori=mn,...,1 do steps (2)—(5)

2. If domain X; is empty, return FAILURE

3. Compute Parents(X;) = {X;: j <i and X is connected to X}
4. Add edges between all pairs of variables in Parents(X;)

5. Perform consistency(Parents(X;), X;)

6. Find solution (or determine none exists) in backtrack-free manner
along order (X1,...,X,)

Ordering doesn't need to fixed a priori, a good ordering can be
discovered along execution; obtaining best ordering is NP-hard

(© 2019 Blai Bonet

Other approaches

» “Remove” variables until constraint graph becomes tree that can be
solved by algorithm for trees. This is called cutset conditioning

» Construct a tree decomposition of CSP made of independent

subproblems, solve each subproblem independently, and combine
solutions into global solution

(© 2019 Blai Bonet

Cutset conditioning

1. Choose set S of variables such that after their removal, the constraint
graph becomes a tree. S is called cycle cutset of constraint graph

2. For each valuation v = vg of S, reduce P into P, by instantiating
variables in S to values in v

3. Solve P, and return overall solution if found
4. If there is no valuation v = vg such that P, is solvable, return FAILURE

5. If | S| = ¢, reduced CSP can be solved in time O((n — ¢)d?) using
directed arc consistency. Since there are O(d°) valuations for S,
overall algorithm takes time O((n — c)d?*°)

There is no a priori bound on the size S of a minimum cycle cutset

Finding cycle cutset of minimum size is NP-hard

(© 2019 Blai Bonet

Cycle cutset in example

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]

(© 2019 Blai Bonet

Tree decomposition

Tree decomposition of CSP P = (X, D,C) is collection of
subproblems where each subproblem, defined over subset of variables,
is such that:

Each variable appears in at least one subproblem

For each constraint C € C, there is at least one subproblem whose
set of variables contains the scope of C

Subproblems sharing variables are organized into tree structure

If variable X; appears in two subproblems, X; then appears in each
subproblem along the unique path that connects both subproblems

(© 2019 Blai Bonet

Tree decomposition of example

[Image from Russell & Norvig. Artificial Intelligence: A Modern Approach]
(© 2019 Blai Bonet

Solving CSPs by tree decompositions

Given CSP P = (X, D,C) and tree decomposition for P, construct new
binary CSP P’ = (X', D’,(’) as follows:

— There is one variable for each subproblem in tree decomposition; the
ith subproblem corresponds to variable X/

— Domain Dj for variable X corresponds to all solutions of the ith
subproblem (ith subproblem is viewed as a reduced CSP)

— If 4th and jth subproblems are connected (because they share at least one
variable), there is binary constraint in D’ with scope (X, X}) and

relation given by all tuples (#;,%}) such that
- t; € Djand t’ € D)

— t;[Xx] = t}[X}] for every varaible X} that appears in both subproblems
(i.e. solutions to subproblems must agree on shared variables)

(© 2019 Blai Bonet

Analysis

Let P = (X,D,C) be CSP, T be tree decomposition for P with k
subproblems, and ¢ be maximum subproblem size

Constructing P’ takes time O(kd®) as there are k subproblems and
each subproblem involves O(d¢) valuations over its variables

Problem P’ has k variables, each domain has size O(d°), and P’

has tree structure

P’ can be solved by directed arc consistency in time O(kd*°)

Total time is thus O(kd>°)

There is no a priori bound on the maximum subproblem size

Finding best tree decomposition is NP-hard

(© 2019 Blai Bonet

© 0 ;U e W N =

= e
N o= O

Consistency and relational databases

bool reduce-arc(variable X, variable Y)

removed := false
foreach x in Domain[X]
found := false

foreach y in Domain[Y]
if (X=x,Y=y) satisfies all constraints between X and Y
found := true
break
if not found
Remove x from Domain[X]
removed := true
return removed

If Rxy expresses all constraints between X and Y, reduce-arc(X,Y)
is equivalent to

Dx = Dx n ﬂx(nyNDy)

where 7x is projection on X, and i is relational join

(© 2019 Blai Bonet

Generalizing arc consistency

For non-binary constraints, arc consistency may be too weak

Example: for X1, Xo, X3 >0, X3 > 13, and X7 + Xo + X3 < 15,
arc consistency is not able to infer X; < 2 and X3 <2

AC: Dx := Dx N mx(Rxy < Dy)
Generalized AC: Dx := Dx N wx(Rg DS\{X})
Relational AC: Rg\(x} = Rg\(x} N ms\(x}(Rs = Dx)
where Rg is constraint such that X € S
— AC: no binary constraints, nothing inferred
— Generalized AC: X; <2 and X5 <2

— Relational AC: X + X, <2

(© 2019 Blai Bonet

Summary

v

CSP is a fundamental problem in Al

v

CSPs with binary constraints are universal

v

CSPs are intractable in general

v

CSPs can be solved by either pure search or pure inference

v

Solving CSPs backtrack free after enforcing consistency

v

Consistency and relational databases, and generalizations of AC

v

State-of-the-art solvers = search + limited/efficient inference

(© 2019 Blai Bonet

