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Goals for the lecture

I Motivation for using propositional languages

I Syntax and semantics of propositional logic

I Inference problem and its solvability over restricted classes of
formulas

I Solving inference problem for CNF formulas by either pure search,
pure inference, or combination of search with limited forms of
inference
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Propositional logic

In many applications knowledge can be expressed with simple
formulas in propositional logic

Answering queries about the system or making decisions can be cast
as inference problems over propositional formulas

We present results and algorithms for making such inferences

(Following slides based on material from A. Darwiche)
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Syntax of propositional logic

Logical formulas build from propositional symbols (atoms) belonging
to a finite set P of propositions in a recursive manner:

– p is a formula (called atom) for every propositional symbol p

– if ϕ is a formula, then ¬ϕ is also a formula

– if ϕ and ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ→ ψ are also
formulas

– if ϕ is a formula, then (ϕ) is also a formula

Example: p ∨ (q ∧ ¬r)→ ¬p ∨ ¬q

A positive literal is atom (e.g. p) while a negative literal is the
negation of atom (e.g. ¬q)
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Propositional valuations

For defining the semantics (meaning) of formulas, we consider
valuations (aka models) over symbols in P

A valuation ν is a function that maps symbols in P to truth values
denoted by {0, 1}

If ν(p) = 1 (resp. ν(p) = 0), we say that ν makes p true (resp. false)
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Semantics of propositional logic

Let ϕ be a formula over P and ν : P → {0, 1} be a valuation for P

We define when ν makes ϕ true, written ν � ϕ, inductively:

– ν � p iff ν(p) = 1

– ν � ¬ϕ iff ν 2 ϕ

– ν � ψ ∧ ϕ iff ν � ψ and ν � ϕ

– ν � ψ ∨ ϕ iff ν � ψ or ν � ϕ

– ν � ψ → ϕ iff ν 2 ψ or ν � ϕ

A formula ϕ over P is valid iff ν � ϕ for every valuation ν over P,
while ϕ is satisfiable iff ν � ϕ for at least one valuation ν over P
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Logical consequence (entailment)

Given two formulas ϕ and ψ over P, we say that ψ is a logical
consequence of ϕ (or that ϕ entails ψ, or ψ is entailed by ϕ) iff

ν � ϕ =⇒ ν � ψ

for every valuation ν over P

If ϕ entails ψ, we write ϕ � ψ
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Basic inference problem

Given two formulas ϕ and ψ over a propositional language P, the
basic inference problem is to determine whether ϕ entails ψ (i.e.
check whether ϕ � ψ)

Fundamental result: ϕ � ψ iff ϕ ∧ ¬ψ is unsatisfiable

Proof: (⇒) ϕ � ψ iff for every valuation ν that makes ϕ true, then ν
makes ψ true as well. Therefore, there is no valuation ν such that
ν � ϕ ∧ ¬ψ (i.e. ϕ ∧ ¬ψ is unsatisfiable)

(⇐) ϕ ∧ ¬ψ is unsatisfiable iff there is no valuation ν that makes
ϕ ∧ ¬ψ true. Therefore, for every valuation ν over P, if ν makes ϕ
true, then it must make ψ true as well

c© 2019 Blai Bonet

Representing knowledge as propositional formulas

Given knowledge base (logical formula), queries (questions) on the
knowledge base often correspond to basic inference problems

The inference problem can be solved using a satisfiability solver for
propositional logic

Other queries may be more difficult to answer and require more
elaborated solvers (e.g. model counting, enumeration of models, etc.)
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General satisfiability problem

The satisfiability problem (SAT) is:

Given formula ϕ over propositional language P, determine whether
ϕ is satisfiable

The satisfiability problem is NP-hard: there is no known efficient
algorithm for it (and we believe such algorithm doesn’t exist)

SAT is a fundamental problem in CS and central to complexity
theory
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Propositional languages

We can restrict the SAT problem by restricting the form of the
formulas ϕ considered

Important cases:

– Conjunctive normal form (CNF): formula ϕ is in CNF iff it is a
conjunction of disjunctions of literals (a disjunction of literals is
called clause)

Example: (p ∨ ¬q) ∧ r ∧ (¬p ∨ q ∨ ¬r)

– Disjunctive normal form (DNF): formula ϕ is in CNF iff it is a
disjunction of conjunctions of literals (a conjunction of literals is
called term)

Example: (p ∧ ¬q ∧ r) ∨ (p ∧ ¬r) ∨ ¬p
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Propositional languages

CNF/DNF are universal languages meaning that for every formula
ϕ, there is formula ψ in CNF (resp. DNF) that is equivalent to ϕ: for
every valuation ν : P → {0, 1}, ν � ϕ iff ν � ψ

Further restrictions:

– k-CNF: formula ϕ is in k-CNF iff it is in CNF and very clause in ϕ
has exactly k literals; k-CNF is universal for k ≥ 3

– k-DNF: formula ϕ is in k-DNF iff it is in DNF and very term in ϕ
has exactly k literals

– Horn theory: formula ϕ is a Horn theory iff it is a conjunction of
Horn clauses, where a Horn clause is a clause with at most one
positive literal

– . . .
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Satisfiability over restricted languages

– 1-CNF and 2-CNF: solvable in polynomial time

– k-CNF for k ≥ 3: NP-hard

– DNF: solvable in polynomial time

– Horn theories: solvable in polynomial time
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Satisfiability for 1-CNF

Let ϕ = `1 ∧ `2 ∧ · · · ∧ `n be a formula in 1-CNF where each `i is a
literal (either atom or negation of atom)

ϕ is SAT iff there is no i and j such that `i ≡ ¬`j (i.e. `i = p and
`j = ¬p for some proposition p)

Observe that 1-CNF formulas correspond to terms and thus to DNF
formulas with a single term
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Satisfiability for DNF

Let ϕ = t1 ∨ t2 ∨ · · · ∨ tn be formula in DNF where each ti is a term
(conjunction of literals)

ϕ is SAT iff there is term ti containing no complemented literals (i.e.
term ti does not contain p and ¬p for some proposition p)

Indeed, if ti = `1 ∧ `2 ∧ · · · ∧ `m is such a term, define the valuation ν
as follows

ν(p) =

{
1 if `i = p for some 1 ≤ i ≤ m
0 otherwise

It is not hard to check that ν � ti and thus ν � ϕ

Conversely, if ν � ϕ, then ν � ti for some 1 ≤ i ≤ n and thus ti
cannot contain two complemented literals
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Satisfiability for 2-CNF

A 2-CNF formula ϕ is a CNF formula made of clauses ` ∨ `′

Each clause ` ∨ `′ is equivalent to the implications ¬`→ `′ and
¬`′ → `; in symbols

` ∨ `′ ≡ ¬`→ `′ ≡ ¬`′ → `

Given 2-CNF formula ϕ over propositions P, we construct the
implication graph for ϕ:

– set of vertices are all the literals over P

– there is edge between ¬` and `′ iff ϕ contains the clause ` ∨ `′
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Example of implication graph

Consider the 2-CNF formula ϕ given by

(x0 ∨ x2) ∧ (x0 ∨ ¬x3) ∧ (x1 ∨ ¬x3) ∧ (x1 ∨ ¬x4) ∧ (x2 ∨ ¬x4)∧
(x0 ∨ ¬x5) ∧ (x1 ∨ ¬x5) ∧ (x2 ∨ ¬x5) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6)

~x0

~x3

~x1~x5

x6

x5

~x6

~x4

~x2

x2

x4

x1

x3

x0

[Image from Wikipedia]
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Solving satisfiability for 2-CNF in linear time

A formula ϕ in 2-CNF is satisfiable iff no strongly connected
component (SCC) in its implication graph contains two
complemented literals

Observe that ν � ϕ iff all literals in a SCC receive the same truth
value from ν. Therefore,

– If ϕ is SAT then no SCC contains two complemented literals

– Conversely, if no SCC has two complemented literals, we can construct
valuation ν such that ν � ϕ (by “top-down” traversal of SCC DAG)

The SCCs of a directed graph can be computed in linear time using
Tarjan’s algorithm (alternatively, Kosaraju’s algorithm [CLRS])

In the example, the implication graph is acyclic and thus each vertex
appears in its own (singleton) SCC. The formula is thus satisfiable
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Satisfiability of Horn theories

A Horn clause is a clause with at most one positive literal, while a
formula is a Horn theory if it is a conjunction of Horn clauses

If ϕ is a Horn theory without unit clauses (clauses of size 1), then
every clause contains at least one negative literal

Therefore, the valuation ν : P → {0, 1} that makes false every
proposition p ∈ P is a valuation that makes ϕ true

If ϕ has one or more unit clauses, we run unit propagation (UP) (in
linear time) to remove all unit clauses and output formula ψ where

– ψ is a Horn theory without unit clauses and thus satisfiable

– ϕ is satisfiable iff UP doesn’t derive a contradiction
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Satisfiability of CNF formulas (SAT-CNF)

SAT problem for general CNF is NP-hard

We present algorithms for solving SAT that either

– perform pure search

– perform pure inference

– combine search with limited forms of inference

From now on, SAT refers to SAT-CNF
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Clausal form for CNF

It is convenient to represent CNF formulas in clausal form

CNF formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cn where each Ci is a clause of form

`i1 ∨ `i2 ∨ · · · ∨ `imi

is represented by the collection of subsets

{ {`11, `12, . . . , `1m1
}, . . . , {`i1, `i2, . . . , `1mi

}, . . . }

For example,

∆ = (A ∨B) ∧ (B ∨ C) ∧ (¬A ∨ ¬X ∨ Y ) ∧ (¬A ∨X ∨ Z) ∧
(¬A ∨ ¬Y ∨ Z) ∧ (¬A ∨X ∨ ¬Z) ∧ (¬A ∨ ¬Y ∨ ¬Z)

is represented as the collection

∆ = { {A,B}, {B,C}, {¬A,¬X,Y }, {¬A,X,Z}, {¬A,¬Y,Z},
{¬A,X,¬Z}, {¬A,¬Y,¬Z} }
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Conditioning

Let ϕ be a formula over propositions P

ϕ|X denotes the formula ϕ where each occurrence of X is replaced
by true and the formula is simplified accordingly

For example,

∆|X = (A∨B)∧(B∨C)∧(¬A∨Y )∧(¬A∨¬Y ∨Z)∧(¬A∨¬Y ∨¬Z)

Likewise, ϕ|¬X denotes the formula ϕ where each occurrence of X
is replaced by false and the formula is simplified accordingly

For example,

∆|¬Z = (A∨B)∧ (B∨C)∧ (¬A∨¬X ∨Y )∧ (¬A∨X)∧ (¬A∨¬Y )
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Conditioning in clausal form

If ϕ is in clausal form, conditioning can be implemented easily:

– ϕ|X = {S \ {¬X} : S ∈ ϕ,¬X ∈ S} ∪ {S ∈ ϕ : {X,¬X} ∩S = ∅}

– ϕ|¬X = {S \ {X} : S ∈ ϕ,X ∈ S} ∪ {S ∈ ϕ : {X,¬X} ∩ S = ∅}

For example, for ∆ given by

∆ = { {A,B}, {B,C}, {¬A,¬X,Y }, {¬A,X,Z}, {¬A,¬Y, Z},
{¬A,X,¬Z}, {¬A,¬Y,¬Z} }

∆|X = { {A,B}, {B,C}, {¬A, Y }, {¬A,¬Y, Z}, {¬A,¬Y,¬Z} }

∆|¬Z = { {A,B}, {B,C}, {¬A,¬X,Y }, {¬A,X}, {¬A,¬Y } }
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Simple backtracking

Let ∆ be a CNF formula in clausal form over P = {X1, X2, . . . , Xn}

1 SAT-I(theory ∆, int i)
2 if i == n + 1
3 if ∆ == ∅
4 return ∅
5 else
6 return FAIL
7

8 M := SAT-I(∆|X_i, i + 1)
9 if M != FAIL then return M ∪ { X_i }

10

11 M := SAT-I(∆|¬X_i, i + 1)
12 if M != FAIL then return M ∪ { ¬X_i }
13

14 return FAIL

c© 2019 Blai Bonet

Simple backtracking with early detection

Let ∆ be a CNF formula in clausal form over P = {X1, X2, . . . , Xn}

1 SAT-II(theory ∆, int i)
2 if ∆ == ∅ then return ∅
3 if ∆ contains ∅ then return FAIL
4

5 M := SAT-II(∆|X_i, i + 1)
6 if M != FAIL then return M ∪ { X_i }
7

8 M := SAT-II(∆|¬X_i, i + 1)
9 if M != FAIL then return M ∪ { ¬X_i }

10

11 return FAIL
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Simple backtracking with literal selection

Let ∆ be a CNF formula in clausal form over P = {X1, X2, . . . , Xn}

1 SAT-III(theory ∆)
2 if ∆ == ∅ then return ∅
3 if ∆ contains ∅ then return FAIL
4

5 L := choose literal in ∆
6

7 M := SAT-III(∆|L)
8 if M != FAIL then return M ∪ { L }
9

10 M := SAT-III(∆|∼L)
11 if M != FAIL then return M ∪ { ∼L }
12

13 return FAIL
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Unit propagation

Limited but efficient form of inference that reasons with unit clauses

If ∆ contains unit clause {`}, then ∆ ≡ ` ∧∆′ where ∆′ = ∆|`

Reduction can be applied recursively until ∆′ contains no unit clause

We obtain the equivalence ∆ ≡ `1 ∧ `2 ∧ · · · ∧ `k ∧∆′ where
∆′ = ∆|`1, `2, . . . , `k contains no unit clause

Pair ({`1, `2, . . . , `k},∆′) is result of unit propagation (UP) over ∆
(there is a unique such pair (result) of UP)

UP can be implemented in linear time with the right data structures
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Example of unit propagation

For ∆ given by

∆ = { {A,B}, {B,C}, {¬A,¬X,Y }, {¬A,X,Z}, {¬A,¬Y, Z},
{¬A,X,¬Z}, {¬A,¬Y,¬Z} }

(∅,∆) = Unit-Propagation(∆)

({¬A,B}, ∅) = Unit-Propagation(∆ ∪ {{¬A}})

({A},Γ) = Unit-Propagation(∆ ∪ {{A}}) where

Γ = {{B,C}, {¬X,Y }, {X,Z}, {¬Y, Z}, {X,¬Z}, {¬Y,¬Z}}

(I, ∅) = Unit-Propagation(∆ ∪ {{¬X}, {¬Z}}) where

I = {¬A,B,¬X,¬Z}
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DPLL algorithm: Search + inference

Let ∆ be a CNF formula in clausal form over P = {X1, X2, . . . , Xn}

The following implements DPLL (Davis, Putnam, Longemann,
Loveland, 1962) algorithm without conditioning by exploiting UP

1 DPLL(theory ∆)
2 (I,Γ) := Unit-Propagation(∆)
3 if Γ == ∅ then return I
4 if Γ contains ∅ then return FAIL
5

6 L := choose literal in Γ
7

8 M := DPLL(Γ ∪ {{L} })
9 if M != FAIL then return M ∪ I

10

11 M := DPLL(Γ ∪ {{∼L} })
12 if M != FAIL then return M ∪ I
13

14 return FAIL
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Example of DPLL

∆ = { {A,B}, {B,C}, {¬A,¬X,Y }, {¬A,X,Z}, {¬A,¬Y, Z},
{¬A,X,¬Z}, {¬A,¬Y,¬Z} }

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X

{∅}

∆|A,B,¬C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,¬C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X [C by UP]

{∅}

∆|A,¬B,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,¬B,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

∅ [B by UP]

∆|¬A = {{B}, {B,C}} UP
=⇒ ({B}, ∅)
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Motivation for implication graph

Formula ∆|A,B,C,X is false because the form {{¬X,Y }, {X,Z},
{¬Y,Z}, {X,¬Z}, {¬Y,¬Z}} is unsatisfiable

DPLL doesn’t see this fact and must exhaust subtree below the
assignment A = false

Implication graphs are used to find causes of failure after the search
below a node fails
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Implication graph for DPLL

The implication graph has nodes of the form d/`, where d is an
integer, that means literal ` is set to true at decision level d

Assignment ` is by either a decision or implication obtained by UP

When clause {`1, . . . , `m} becomes unit {`m}, we add edges
di/`i → d/`m to implication graph (where d is current decision level)

When UP derives a contradiction at level d (i.e. null clause), the node
d/⊥ is added to the graph together with edges di/`i → d/⊥ for the
literals `i that belong to original clause
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Example of implication graphs

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X

{∅}

∆|A,B,¬C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,¬C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X [C by UP]

{∅}

∆|A,¬B,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,¬B,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

∅ [B by UP]

∆|¬A = {{B}, {B,C}} UP
=⇒ ({B}, ∅)

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥

3/¬X 3/Z 3/⊥
2/¬C
3/X 3/Y 3/Z 3/⊥3/¬X 3/Z 3/⊥

1/¬B

1/C

3/X 3/Y 3/Z 3/⊥3/¬X 3/Z 3/⊥

0/¬A 0/B
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Example of implication graphs

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X

{∅}

∆|A,B,¬C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,B,¬C,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

L = X [C by UP]

{∅}

∆|A,¬B,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ {∅}

{∅}

∆|A,¬B,¬X = {{Z}, {¬Y, Z}, {¬Z}, {¬Y,¬Z}} UP
=⇒ {∅}

∅ [B by UP]

∆|¬A = {{B}, {B,C}} UP
=⇒ ({B}, ∅)

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥

3/¬X 3/Z 3/⊥

2/¬C
3/X 3/Y 3/Z 3/⊥3/¬X 3/Z 3/⊥

1/¬B

1/C

3/X 3/Y 3/Z 3/⊥3/¬X 3/Z 3/⊥

0/¬A 0/B
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Analyzing reasons for failure

Every cut in the implication graph that separates the decisions from
the contradiction makes up a conflict set

Conflict sets are used to:

– analyze reasons for failure

– compute backtrack level

– obtain clasues to learn
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Example of conflict sets

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥

A cut that separates decisions from conflict makes up a conflict set

{0/A, 1/B, 2/C, 3/X, 3/Y, 3/Z}, {3/⊥} =⇒ {0/A, 3/Z, 3/Y } 7→ A ∧ Z ∧ Y

{0/A, 1/B, 2/C, 3/X, 3/Y }, {3/Z, 3/⊥} =⇒ {0/A, 3/Y } 7→ A ∧ Y

{0/A, 1/B, 2/C, 3/X}, {3/Y, 3/Z, 3/⊥} =⇒ {0/A, 3/X} 7→ A ∧X

c© 2019 Blai Bonet

Unit implication point

Which conflict set to use?

Choose cut where all nodes at current decision level, except the
decision node at current level, are on one side of the cut, and all other
nodes are on the other side

Formally, we define C(n) for node n in implication graph:

C(n) =

{
{n} if Pa(n) = ePa(n) = ∅

ePa(n) ∪
⋃

n′∈Pa(n)C(n′) otherwise

where Pa(n) are the parent of node n that are at same level as n,
and ePa(n) are the parents of n at earlier levels
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Example UIP conflict set

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥

0/A

1/B

2/C

3/¬X 3/Z 3/⊥

C(n) =

{
{n} if Pa(n) = ePa(n) = ∅
ePa(n) ∪

⋃
n′∈Pa(n) C(n′) otherwise

C(3/⊥) = ePa(3/⊥) ∪ C(3/Z) ∪ C(3/Y )

= {0/A} ∪ [ePa(3/Z) ∪ C(3/Y )] ∪ [ePa(3/Y ) ∪ C(3/X)]

= {0/A} ∪ [{0/A} ∪ ePa(3/Y ) ∪ C(3/X)] ∪ [{0/A} ∪ {3/X}]
= {0/A, 3/X}
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Example UIP conflict set

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥

0/A

1/B

2/C

3/¬X 3/Z 3/⊥

C(n) =

{
{n} if Pa(n) = ePa(n) = ∅
ePa(n) ∪

⋃
n′∈Pa(n) C(n′) otherwise

C(3/⊥) = ePa(3/⊥) ∪ C(3/Z) ∪ C(3/¬X)

= {0/A} ∪ [ePa(3/Z) ∪ C(3/¬X)] ∪ {3/¬X}
= {0/A} ∪ [{0/A} ∪ {3/¬X}] ∪ {3/¬X}
= {0/A, 3/¬X}
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From conflict sets to implied clauses

A conflict set corresponds to a term t that is inconsistent with the
theory ∆; i.e. ∆ ∧ t in UNSAT

Therefore, by fundamental result about inference, ∆ � ¬t

Since ¬t is a clause, clause ¬t is implied by ∆ and ∆ ∧ ¬t ≡ ∆

In example, the conflict set {0/A, 3/X} corresponds to clause
{¬A,¬X} while {0/A, 3/¬X} corresponds to clause {¬A,X}

[Remark: both clauses implies the unit clause {¬A} which says A must be
false in every model of ∆]
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From conflict sets to backtrack level

Conflict set also defines backtrack level. For conflict set C, define:

– Backtrack level (bl) is highest decision level of any literal in C

– Assertion level (al) is second highest decision level of any literal in C
(-1 if C is singleton conflict set)

For conflict set C = {0/A, 3/X}, bl = 3 and al = 0

Backtracking to level bl corresponds to chronological bracktracking since
bl is always equal to current decision level

Search can be improved by backtracking to level al+ 1, undoing all decisions
at levels al+ 1, al+ 2, . . ., but adding (learning) the clause that corresponds
to the conflict set C

This type of backtrack is not a regular backtrack as the search starts again
at level al + 1 by running UP on the extended theory and then choosing a
new literal to branch upon
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Conflict-driven clause learning (CDCL)

∆ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}}

∆′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}}∆′′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}, {¬A}}

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ ({A,B,C,X, Y, Z,¬Z}, {∅})

{∅}

∆′|A = {{¬X}, {B,C}, {¬X, Y }, {X,Z}, {¬Y, Z}, {X,¬Z}, {¬Y,¬Z}} UP
=⇒ ({A,¬X,Z,¬Z}, {∅})

∅

∆′′
UP

=⇒ ({¬A,¬B}, ∅)

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥ C(3/⊥) = {0/A, 3/X}, cl = {¬A,¬X}, al = 0

0/¬X 0/Z 0/⊥ C(0/⊥) = {0/A}, cl = {¬A}, al = −1−1/¬A −1/B [decision level -1 indicates all inferences done by UP from new unit clause]

c© 2019 Blai Bonet

Conflict-driven clause learning (CDCL)

∆ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}}

∆′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}}

∆′′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}, {¬A}}

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ ({A,B,C,X, Y, Z,¬Z}, {∅})

{∅}

∆′|A = {{¬X}, {B,C}, {¬X, Y }, {X,Z}, {¬Y, Z}, {X,¬Z}, {¬Y,¬Z}} UP
=⇒ ({A,¬X,Z,¬Z}, {∅})

∅

∆′′
UP

=⇒ ({¬A,¬B}, ∅)

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥ C(3/⊥) = {0/A, 3/X}, cl = {¬A,¬X}, al = 0

0/¬X 0/Z 0/⊥ C(0/⊥) = {0/A}, cl = {¬A}, al = −1

−1/¬A −1/B [decision level -1 indicates all inferences done by UP from new unit clause]
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Conflict-driven clause learning (CDCL)

∆ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}}∆′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}}

∆′′ = {{A,B}, {B,C}, {¬A,¬X, Y }, {¬A,X,Z}, {¬A,¬Y, Z}, {¬A,X,¬Z}, {¬A,¬Y,¬Z}, {¬A,¬X}, {¬A}}

L = A

L = B

L = C

L = X

{∅}

∆|A,B,C,X = {{Y }, {¬Y, Z}, {¬Y,¬Z}} UP
=⇒ ({A,B,C,X, Y, Z,¬Z}, {∅})

{∅}

∆′|A = {{¬X}, {B,C}, {¬X, Y }, {X,Z}, {¬Y, Z}, {X,¬Z}, {¬Y,¬Z}} UP
=⇒ ({A,¬X,Z,¬Z}, {∅})

∅

∆′′
UP

=⇒ ({¬A,¬B}, ∅)

0/A

1/B

2/C

3/X 3/Y 3/Z 3/⊥ C(3/⊥) = {0/A, 3/X}, cl = {¬A,¬X}, al = 0

0/¬X 0/Z 0/⊥ C(0/⊥) = {0/A}, cl = {¬A}, al = −1

−1/¬A −1/B [decision level -1 indicates all inferences done by UP from new unit clause]
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Random re-starts

Each learned clause prunes at least one branch from search tree, the current
branch, but may prune other branches

If a clause is learned each time a conflict is reached, the set of new clauses
prune the set of visited branches

Therefore, if search re-starts from scratch with new theory, it skips the
already visited branches and continue exploration over remaining search tree

Random re-starts is a technique in which the search algorithm is re-started
from scratch from time to time in order to diversify the search without
loosing completeness and without getting trapped in infinite loop

Random re-starts are key component of modern SAT solvers
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Implementing UP

Modern SAT solvers maintain global partial assignment and
implication graph that are updated as search makes decisions and
performs backtracks

Every time a decision L is performed (i.e. setting L to true), UP is
run to see whether other literals are implied or conflict is detected

UP accounts for ∼90% or more of running time

A good implementation of UP is crucial for an effective SAT solver
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General scheme for UP

Called with making decision L

1 Propagate(L)
2

3 C := clauses where ∼L appears
4

5 foreach clause c in C
6 if c is unit clause % given current assignment
7 L’ := unique literal in c % one with no value assigned
8

9 Assign var(L’) to L’
10 if Propagate(L’) == false
11 return false % conflict detected
12

13 else if c is violated
14 return false % conflict detected
15

16 return true

Bottleneck: lines 3, 6, 7, and 13
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Using indices and counters

For each literal L: keep list of clauses that contain L
(lists must be updated when new clauses are added)

For each clause c: counters for clause size, #positive literals in c,
and #negative literals in c denoted by S[c], P [c], and N [c] resp.

– Initially, P [c] = N [c] = 0 for each clause c

– Clause c is satisfied when P [c] > 0

– Clause c is violated when N [c] = S[c]

– Clause c is unit when N [c] = S[c]− 1

Counters are updated when literals receive value, when performing
backtracks, and when performing re-starts
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UP with counters

1 Propagate(L)
2 CP := clauses where L appears
3 CN := clauses where ∼L appears
4 no-conflict := true
5

6 foreach clause c in CN
7 N[c] := N[c] + 1 % inc #lits false
8 if P[c] == 0 and N[c] == S[c] - 1 % c is unit
9 L’ := unique literal in c % one with no value

10 Assign var(L’) to L’
11 if Propagate(L’) == false
12 no-conflict := false
13

14 else if N[c] == S[c] % c is violated
15 no-conflict := false
16

17 foreach clause c in CP
18 P[c] := P[c] + 1 % inc #lits true
19

20 return no-conflict

Why don’t we directly return in lines 11 and 14?
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Ideal UP algorithm and approximation

Ideal algorithm:

– Inspect a clause only when all literals except one are assigned false

– Nothing to do when clause is satisfied or non-unit

Best known approximation to ideal (introduced in zChaff in 2001):

– Associate each clause to two of its own unassigned literals

– Inspect clause when one of the two literals is assigned false
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Lazy data structure: Watched literals

I For non-satisfied clause c: “watch” two non-false literals in c

I For literal L: keep list of clauses where L is watched

Maintain invariant:

– If watched literal L becomes false, find another to watch

– If there is no other unassigned literal, the clause is unit

Advantages:

– Visit fewer clauses when literal is assigned

– No need to do anything when backtrack or re-starts!
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Example: Watched literals

¬X

t/f

Y

t/f

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment:

Unit!
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Example: Watched literals

¬X

f

Y

t/f

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: X = true

Unit!
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Example: Watched literals

¬X

t/f

Y

t/f

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: (backtrack)

Unit!
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Example: Watched literals

¬X

t/f

Y

t

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: Y = true

Unit!
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Example: Watched literals

¬X

t/f

Y

t/f

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: (backtrack)

Unit!
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Example: Watched literals

¬X

t/f

Y

t/f

W

t/f

¬Z

f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: Z = true

Unit!
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Example: Watched literals

¬X

t/f

Y

f

W

t/f

¬Z

f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: Z = true, Y = false

Unit!
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Example: Watched literals

¬X

t/f

Y

f

W

f

¬Z

f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: Z = true, Y = false, W = false

Unit!
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Example: Watched literals

¬X

t/f

Y

t/f

W

t/f

¬Z

t/f

Clause: ¬X ∨ Y ∨W ∨ ¬Z

Assignment: (re-start)

Unit!
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UP with watched literals

1 Propagate(L)
2 WC := clauses where ∼L is watched
3

4 foreach clause c in WC
5 w1 := watched literal for ∼L in c
6 w2 := the other watched literal in c
7

8 if w2 is not true
9 Replace w1 with non-false literal in c 6= w2

10

11 if w1 cannot be replaced and w2 is unknown
12 Assign var(w2) to w2
13 if Propagate(w2) == false
14 return false
15

16 else if w1 cannot be replaced and w2 is false
17 return false
18

19 return true

Observe returns in lines 14 and 17!
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Literal selection: VSIDS heuristic

Most used heuristic for literal selection during search is VSIDS or
variable state independent decaying sum

– Keep counters for each literal

– Counter for L initialized to number of clauses containing L

– Variable with highest combined count is chosen with value given
by highest count

– When clause is added, increment counter of each literal in clause

– From time to time, all counters are halved (decaying)

– Variables are ordered using heap

– “Cheap” to implement (accounts for small % of running time)
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Solving SAT by pure inference

SAT problems can be solved by pure deductive methods

We use resolution as unique rule of inference for CNF theories

We will see:

– Resolution is a correct inference

– Resolution is a complete inference with respect to refutation
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Propositional resolution

Let C and C ′ be clauses with complemented literals L and ∼L; i.e.

C = L ∨ `1 ∨ `2 ∨ · · · ∨ `n

C ′ = ∼L ∨ `′1 ∨ `′2 ∨ · · · ∨ `′n′

Let ν be valuation such that ν � C ∧ C ′. There are two mutually exclusive
cases whether ν � L or ν 2 L:

– if ν � L, then ν � `′1 ∨ `′2 ∨ · · · ∨ `′n′

– if ν 2 L, then ν � `1 ∨ `2 ∨ · · · ∨ `n

Then, ν � `′1 ∨ · · · ∨ `′n′ ∨ `1 ∨ · · · ∨ `n. In clausal form, ν � (C∪C ′)\{L,∼L}

Rule of inference for resolution infers clause (C ∪ C ′) \ {L,∼L} from
clauses C and C ′. Inferred clause is called resolution of C and C ′ upon
literal L, denoted by ResL(C,C ′)
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Resolution closure

Let ∆ be a CNF theory

∆ is resolution free iff for any two clauses C and C ′ in ∆ with
complemented literal L, there is clause C ′′ ∈ ∆ such that
C ′′ ⊆ ResL(C,C ′) (i.e. no new knowledge is obtained by resolution)

For any CNF ∆, there is CNF ∆′ such that ∆ ≡ ∆′ and ∆′ is
resolution free: ∆′ is called a resolution closure for ∆

A resolution closure for ∆ can be computed iteratively by applying
resolution until no new clause is generated (i.e. fix point)
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Resolution is refutation complete

Let ∆ be CNF theory and ∆′ be resolution closure for ∆. Then, ∆ is
UNSAT iff ∆′ contains the empty clause

Proof: (⇐) if ∅ ∈ ∆′, ∆ � ∅ since ∆ ≡ ∆′. As no valuation makes the
empty clause true, there is no valuation for ∆ and ∆ is UNSAT

(⇒) For forward direction, we show contrapositive of the implication:
if ∆′ doesn’t contain the empty clause, then ∆ is SAT

Assume ∅ /∈ ∆′. We construct valuation ν for ∆ iteratively (backtrack-free):

– Choose literal for X1 consistent with ∆′. It can be done since ∆′ doesn’t
contain both {X1} and {¬X1} (otherwise ∅ ∈ ∆′)

– After choosing literals for X1, . . . , Xi−1 consistent with ∆′, choose literal for Xi

consistent with ∆′ and chosen literals `1, . . . , `i−1 (i.e. violating no clause)

Indeed, if `1 ∧ · · · ∧ `i−1 ∧Xi violates clause C, and `1 ∧ · · · ∧ `i−1 ∧ ¬Xi

violates clause C′, then `1 ∧ · · · ∧ `i−1 violates ResXi(C,C
′) which is in ∆′

(contradiction). Therefore, either Xi or ¬Xi (or both) is consistent with
current valuation and ∆′
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Solving 2-CNF in polynomial time using resolution

Let ∆ be a 2-CNF theory. We can test for satisfiability by computing a
resolution closure ∆′ of ∆ and checking whether ∅ ∈ ∆′

We show that such closure can be computed in polynomial time for 2-CNF

If {L, `} and {¬L, `′} are two clauses in ∆ with complemented literal L,
then ResL(C,C ′) = {`, `′} is again a clause of size ≤ 2

By applying resolution iteratively over ∆, no clause of size > 2 is generated.
The number of clauses of size ≤ 2 over n variables is 2n+ 4

(
n
2

)
= O(n2)

Therefore, a naive algorithm for computing the closure performs O(n2)
iterations, where each iteration takes time O(n4) (two nested loops that
scan over clauses), for a total running time (loosely) bounded by O(n6)
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Other inference methods for SAT

I All the methods for CSP together with their guarantees apply for
SAT as SAT is a special case of CSP

I There are other inference algorithm for SAT whose complexity is
exponential in certain measures of width for CNF theories
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SAT modeling: Sudoku

We show how to encode a Sudoku instance as SAT theory ∆ such
that every model of ∆ is a solution

By rules of Sudoku, each instance has exactly one solution; thus ∆
should have exactly one model

A Sudoku board consists of:

– 9× 9 board where each cell must contain a digit in {1, 2, . . . , 9}

– Same digit cannot be repeated in a row, column, or subtable

– Board is partially filled with digits

– Task is to complete board
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Sudoku as SAT

Propositions: pr,c,d to denote that entry (r, c) contains digit d

Clauses:

– Every cell contains one digit: Exactly-1
{
pr,c,d : d

}
for (r, c)

– Unique digits in row: Exactly-1
{
pr,c,d : c

}
for r and d

– Unique digits in column: Exactly-1
{
pr,c,d : r

}
for c and d

– Unique digits in subtable: Exactly-1
{
pr,c,d : (r, c)∈S

}
for S and d

– Units for entries in given instance

Some of these formulas may be redundant!
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SAT modeling: Exactly-1

This type of constraint is example of “pseudo-boolean constraint”

Different ways to encode Exactly-1
{
Li : i = 1, 2, . . . , n}

Direct (quadratic) encoding:

– At-Least-1: L1 ∨ L2 ∨ · · · ∨ Ln

– At-Most-1 (AMO): ¬Li ∨ ¬Lj for each 1 ≤ i < j ≤ n

More efficient encodings of AMO are the Heule encoding and the
logarithmic encoding
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Summary

I SAT is a fundamental problem in AI and CS

I SAT problem is intractable in general but for some special cases
SAT is tractable

I CNF is a good representation language for expressing succinctly
many interesting problems

I SAT-CNF is intractable in general

I SAT can be solved by either pure search, pure inference, or
combination of search with limited forms of inference like UP

I State-of-the-art solvers combine search with unit propagation,
non-chronological backtracking via clause learning, and random
re-starts
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