
Developing Autonomous Systems in Artificial
Intelligence: Solvers and Learners

Blai Bonet

Universidad Simón Boĺıvar, Venezuela
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Challenge

How to develop agents that make decisions

on their own?



Autonomous behaviour in AI

Control problem: at each decision time, select next action to execute

Three main approaches:

– Programming-based: specify control by hand in form of program

Pros: domain-knowledge easy to express
Cons: cannot deal with situations not anticipated by ‘programmer’

– Model-based (top-down): synthesis of control from specification

Pros: flexible, clear, and domain-independent
Cons: need a model (specification), computationally intractable

– Learning-based (bottom-up): learn control from experience

Pros: does not require much knowledge in principle
Cons: right features needed, incomplete inf. is problematic, slow learning



Model-based approach: What’s in the model?

Model of the world (environment) captures:

– Variables make up states; e.g. position of agent(s) and objects, battery
life, relations between objects, etc.

– Initial state of the system

– Goals of the agent

– Executable actions (may differ at each state)

It also captures assumptions about the environment:

– Deterministic vs. stochastic effects of actions

– Fully vs. partially observable variables

– Cost vs. reward setting

– . . .



Example: Gripper
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– Bunch of balls in room B

– Robot with left and right gripper, each one may hold a ball

– Goal: move all balls to room A

Robot may:

– move between rooms A and B; e.g. Move(A,B)

– use grippers to pick and drop balls from rooms; e.g. Pick(left, b3, B)



Example: Gripper
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Variables:

– robot’s position: room A or B

– position of each ball bi: either room A or B, or left or right gripper

States: valuation for vars (#states > 2n+1 for problem with n balls)

Actions:

– deterministic transition function: from state to next state

– may have preconditions; e.g. can drop 1 in A only if at A and holding it



Classification of Models

Models classified depending on the assumptions:

– Classical planning: one agent, full sensing (information), det actions

– FOND/MDP (planning): one agent, full sensing, non-det actions

– POND/POMDP (planning): one agent, partial sensing, non-det act.

– DEC-POMDP: multiple collaborative agents in non-det and partially
observable setting: joint reward, decentralized partial sensing, and actions

– Partially Observable Stochastic Games (POSG): multiple (perhaps
competing) agents with decentralized rewards, sensing, and actions

As model becomes more general, synthesis becomes harder!



Planners

A planner is a solver for a class of models

– input is specification of task (e.g. gripper)

– output is controller for task (e.g. sequence of steps in gripper)

Instance Planner Controller (Plan)

Instance described with specification language

Class of models: models that can be described with language

The planner must solve any task in the class of models



AI research today

Recent work published in top AI conferences and journals are on:

– Machine Learning

– Natural Language

– Probabilistic Reasoning

– Vision and Robotics

– SAT and Constraints

– Search and Planning

– Multi-Agent Systems

– . . .

Highlighted often considered techniques, but often more convenient to think
of them in terms of models + solvers (also applies to many things in ML)



Models + Solvers

Problem Solver Solution

Solver: program that solves input problems

Input: any problem that belongs to well-defined class of problems

Output: solution to input

• Input specified in some (fixed) representation language

• Scope of solver is class of all problems that can be specified in language



Example: Solver for linear equations

Problem Solver Solution

Problem: the age of John is 3 times the age of Peter. In 10 years, it will be
only 2 times. How old are John and Peter?

Expressed as: J = 3P ; J + 10 = 2(P + 10)

Solver: Gauss-Jordan (variable elimination)

Language: Sets of linear equations

Solution: P = 10 ; J = 30

Solver is general because it deals with any instance of the model

Model is tractable (solvable in cubic time as a function of number of
variables and equations in the model); AI models are intractable . . .



Example from AI: Solvers for SAT

CNF instance SAT Solver Solution

SAT is the problem of determining whether there is a truth assignment
that satisfies a set of clauses (disjunction of literals); e.g.

x ∨ z︸ ︷︷ ︸
clause

; ¬y ∨ ¬z ∨ w︸ ︷︷ ︸
clause

; ¬x ∨ z︸ ︷︷ ︸
clause

; ¬w ∨ ¬z︸ ︷︷ ︸
clause

Satisfying truth assignment: w = false ; y = false ; z = true (x = any)

SAT is NP-Complete: worst-case running time of SAT solvers is
exponential in number of variables (100 vars: 2100 ≈ 1030)

However, SAT solvers tackle problems with thousands of variables and
clauses, and they are widely used (verification, CAD, etc)
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Complexity of decision problems

Decision problems classified in terms of how many resources (time and
space) they require to be solved (resources measured in terms of input size):

– LOGSPACE = logarithmic space (fully tractable)

– P = polynomial (deterministic) time (“theoretically” tractable)

– NP = non-det poly time (exponential time simulation in det computer)

– PSPACE = poly space (using poly space, computer may run by exp time)

– EXP = exponential (deterministic) time (provably intractable)

– NEXP = non-deterministic exponential time (provably intractable)

– EXPSPACE = exp space (computer may run by double exp time) (idem)

– EXP2 = doubly exponential (deterministic) time (provably intractable)

– . . . hierarchy continues . . .
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How SAT solvers do it?

Formula in CNF: {x ∨ z, ¬y ∨ ¬z ∨ w, ¬x ∨ z, ¬w ∨ ¬z }

One approach: Brute-force search
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xȳz̄w

7
xȳz̄w̄

7

x̄

x̄y

x̄yz

x̄yzw

7
x̄yzw̄

7

x̄yz̄

x̄yz̄w

7
x̄yz̄w̄

7

x̄ȳ
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How SAT solvers do it?

Formula in CNF: {x ∨ z, ¬y ∨ ¬z ∨ w, ¬x ∨ z, ¬w ∨ ¬z }

Another approach: Inference (resolution)

(x ∨ z) ∧ (¬x ∨ z) =⇒ ¬z
z ∧ (¬w ∨ ¬z) =⇒ ¬w

z ∧ ¬w ∧ (¬y ∨ ¬z ∨ w) =⇒ ¬y

Brute-force search and inference are both correct, but don’t scale up!



How SAT solvers do it?

Modern SAT solvers combine search with inference

Two types of efficient inference at every node in search tree:

– Unit propagation (UP)

– Conflict-based clause learning (CDCL) to implement non-chronological
backtracking and re-starts

Main lesson: right thing isn’t only about correctness; efficiency is crucial!



Specification of models

Models specified using representation languages

These languages are factored languages

They permit specifications of very large systems (i.e. very large number of
states) using very few symbols (bytes)

Instance in factored
representation Planner Controller (Plan)



Example: Gripper in PDDL

(define (domain gripper)
(:predicates (room ?r) (ball ?b) (gripper ?g) (at-robby ?r) (at ?b ?r)

(free ?g) (carry ?o ?g))

(:action move
:parameters (?from ?to)
:precondition (and (room ?from) (room ?to) (at-robby ?from))
:effect (and (at-robby ?to) (not (at-robby ?from))))

(:action pick
:parameters (?b ?r ?g)
:precondition (and (ball ?b) (room ?r) (gripper ?g) (at ?b ?r) (at-robby ?r) (free ?g))
:effect (and (carry ?b ?g) (not (at ?b ?r)) (not (free ?g))))

(:action drop
:parameters (?b ?r ?g)
:precondition (and (ball ?b) (room ?r) (gripper ?g)
(carry ?b ?g) (at-robby ?r))
:effect (and (at ?b ?r) (free ?g) (not (carry ?b ?g))))

)

(define (problem p1)
(:domain gripper)
(:objects A B left right b1 b2 b3)
(:init (room A) (room B) (gripper left) (gripper right) (ball b1) (ball b2) (ball b3)

(at-robby A) (at b1 B) (at b2 B) (at b3 B) (free left) (free right))
(:goal (and (at b1 A) (at b2 A) (at b3 A))))



Complexity of planning

Given problem represented in factored form, the task of checking whether
there is a solution is:

– Classical planning: PSPACE

– FOND planning / MDPs: EXP for FOND / P for explicit MDPs

– POND planning / POMDPs: EXP2 for POND / PSPACE for explicit
and bounded horizon, UNDECIDABLE for unbounded horizon

– DEC-POMDPs: NEXP for explicit and bounded horizon,
UNDECIDABLE for unbounded horizon

– Partially Observable Stochastic Games (POSG): at least as difficult
as NEXP(NP) for explicit and bounded horizon

As model becomes more expressive, task becomes more difficult to solve!



Beyond classical planning

Classical planning works: solvers able to solve large problems

Model is simple, but useful:

– actions may be non-primitive (e.g. abstractions of procedures)

– closed-loop replanning able to cope with some uncertainty and limitations

Inherent limitations:

– can’t model general uncertainty on outcome of actions

– can’t deal with incomplete information (partial sensing)

Two ways of handling limitations:

– extend scope of current solvers (replanning, translations, etc)

– develop new solvers for more expressive models
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Online planning in reward-based video games

Methods and ideas from classical planning lifted to play Atari games:

– Collection of deterministic video games that share: screen of 160× 210 pixels,
each up to 128 colors, and 18 actions (joystick movements)

– In majority of games there is no fixed goal; goal is to max accrued reward

– Online game that runs at 60 fps: decisions must be taken at a rate of 4
decisions per second (at least)

– No explicit model, but simulator is available

Given time budget for choosing next action to apply:

– Use simulator to explore search tree of screens within time bound
(tree grows exponentially fast: 18d nodes at depth d)

– Select “best sequence of actions” in explored tree

– Apply first action in selected sequence, and repeat
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Demo: Playing Atari games

– 60 frames per second, decision made every 15 frames

– Time budget of 1/2 second per decision (almost real time)

– Play for at most 5 minutes or 18k frames

– Screen 160× 210 pixels of 128 colors each:

• split into 16× 14 disjoint tiles
• ∼28k features tell which colors contain each tile
• ∼6.8m features for relative dist. between tiles with 2 given colors
• ∼13.7m features for rel. dist. btw tiles with 2 col. at curr. and prev. screens
• total of ∼20.5m features

– Games in demo:

• Space invaders
• Boxing
• Breakout



Agent with partial information

Agent has partial information when it doesn’t see full states

General way to model such problems:

– finite set Ω of observable tokens

– environment produces a token after applying action

– agent receives token (it doesn’t see state directly)

– token may depend on current state and last applied action



Example: Delivering colored balls

R
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G

Agent knows its position and senses existence of balls in current cell

Observable tokens Ω = {000, 001, 010, . . . , 111} (i.e. 3-bit word)

– 1st bit tells whether there is a red ball in current cell

– 2nd bit tells whether there is a green ball in current cell

– 3rd bit tells whether there is a blue ball in current cell



Belief states and information tracking

Agent keeps track of states that are possible given executed actions and
observed tokens

Set of possible states is called belief state

The initial belief state is b0 (all possible initial configurations)

Afterwards,

– belief after executing action a:

ba = {s′ : s′ is poss. successor after doing a in s ∈ b} (progression)

– belief after executing action a and receiving token z ∈ Ω:

bza = {s′ ∈ ba : s′ is compatible with token z} (filtering)
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Solvers for problems with partial information

Solvers need to address two fundamental tasks (both intractable):

– information tracking (maintenance of belief states)

– action selection for achieving goal

First task is about how information is tracked, and the form of solutions:

– solution is mapping from belief states into actions

Second is about how beliefs, search and inference are combined to find
solutions



Factored belief tracking

Number of system states is exponential in number of variables (e.g. with 9
balls, more than 9× 1014 states)

Number of belief states is exponential in number of states; that is, doubly
exponential in number of variables

Factored belief tracking (FBT) is algorithm for efficient representation and
update of belief states (even at the expense of doing approximations)

FBT decomposes the task into smaller subtasks that are tracked
independently while enforcing some degree of consistency among them



Example: FBT in Minesweeper
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– In 4× 4 board with 5 mines, there are 4,368 different configurations

– Number of belief states (i.e. non-empty subsets of states) is 24,368 − 1

– FBT tracks possible contents of 3× 3 sub-grids independently

– Consistency among “local factors” is (approximately) enforced

– Implemented in linear space + (amort.) const. time per decision
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Demo: Factored belief tracking

State-of-the-art agent for:

– Minesweeper

– Battleship

Both problems are difficult:

– Corresponding decision problems are NP-Complete

– Challenge for solvers is to do good belief tracking

– Once beliefs are correctly handled, decision making is trivial!

– Belief tracking done with FBT



Autonomous behaviour in AI

Control problem: at each decision time, select next action to execute

Three main approaches:

– Programming-based: specify control by hand in form of program

Pros: domain-knowledge easy to express
Cons: cannot deal with situations not anticipated by ‘programmer’

– Model-based (top-down): synthesis of control from specification

Pros: flexible, clear, and domain-independent
Cons: need a model (specification), computationally intractable

– Learning-based (bottom-up): learn control from experience

Pros: does not require much knowledge in principle
Cons: right features needed, incomplete inf. is problematic, slow learning



(Supervised) Learners

x function fθ(·) fθ(x)

– x is input; it may be a high-dimensional vector

– function fθ has fixed structure but values determined by parameters in θ

– output fθ(x) may be vector

Supervised learning:

– Given anotated (i.i.d.) sample (x1, y1), (x2, y2), . . . , (xm, ym)

– Find parameter θ∗ that is “right fit”:

• low “training error”; e.g., low 1
2m

∑m
i=1(yi − fθ∗(xi))

2

• good “generalization”; e.g., low E(X,Y )∼(xi,yi)

[
(Y − fθ∗(X))2

]
– Standard algorithm: Stochastic gradient descend (SGD)
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Deep Learning / Deep Reinforcement Learning

x function fθ(·) fθ(x)

– fθ is neural network with many hidden layers

– number of parameters in θ is often quite large

– DL is about classification: xs are objects, ys are class labels

– DRL is about control: xs are “state features”, ys are actions (or state values)

Training:

– Network trained with many examples during hours/days using SGD

– DL: training data often available (e.g. tagged images/videos from internet)

– DRL: often insufficient training data

– Once trained, evaluation is fast
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Success and limitations of learners

Big success of deep nets in AI:

– Breakthroughs in image/video understanding, speech recognition, . . .

– Superhuman performance in complex games like Chess and Go

Key limitation of trained nets is fixed input size:

– No problem for images, Chess or Go, as they correspond to “fixed-size inputs”

– Problematic in simpler domains; e.g. gripper with different # of balls or grippers
(there is no deep net able to solve gripper with arbitrary # of balls)



Solvers vs. learners

Rollout IW planner and DeepMind’s DQN learner perform well in Atari

They illustrate common characteristics of solvers and learners:

– Rollout IW works from scratch for any game without prior pre-processing.
It calculates action to apply by doing exploration under given time budget.

Solvers “think before acting” at each decision point

– DQN requires a lot of training over many data. Afterwards, DQN plays very fast
as decision making is simply to “run network on given input”.

Learners require a lot of training and tuning. Then, decision making is fast

On the other hand:

– Solvers require models or, in some cases, simulators with given capabilities

– Learners require large training sets and pre-processing time



Integration of solvers and learners

Better agents by combining solvers and learners

Training data for DRL can be automatically generated using solvers:

– Starting from sample Mi for i = 0:

• Train DRL function fθi with sample Mi

• Use self-play or stochastic search to generate new “interesting inputs” {xk}k
• Use solver (possibly enhanced by fθi) to find labels {yk}k for such inputs

• Make new sample Mi+1 = {(xk, yk)}k, increase i, and repeat

Models can be learned and then fed to solvers:

– From “observed behavior”, use learner to build model

– Use solver to find controller for model

– Use controller to generated new behaviour, and repeat
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• Make new sample Mi+1 = {(xk, yk)}k, increase i, and repeat

Models can be learned and then fed to solvers:

– From “observed behavior”, use learner to build model

– Use solver to find controller for model

– Use controller to generated new behaviour, and repeat



Integration of solvers and learners

Better agents by combining solvers and learners

Training data for DRL can be automatically generated using solvers:

– Starting from sample Mi for i = 0:

• Train DRL function fθi with sample Mi

• Use self-play or stochastic search to generate new “interesting inputs” {xk}k
• Use solver (possibly enhanced by fθi) to find labels {yk}k for such inputs

• Make new sample Mi+1 = {(xk, yk)}k, increase i, and repeat

Models can be learned and then fed to solvers:

– From “observed behavior”, use learner to build model

– Use solver to find controller for model

– Use controller to generated new behaviour, and repeat



Solvers + Learners: AlphaZero

DeepMind’s AlphaZero:

– Superhuman performance in Chess, Shogi (Japanese Chess), and Go

– Learns how to play using only game rules and self play

– Combines DRL with Monte-Carlo Tree Search (MCTS)

– Deep net trained with SGD; it provides evaluation function fθ for states

– Using fθ and MCTS, AlphaZero does self-play to generate new training data

Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation
games between different players when given one second per move. a Performance of AlphaZero
in chess, compared to 2016 TCEC world-champion program Stockfish. b Performance of Al-
phaZero in shogi, compared to 2017 CSA world-champion program Elmo. c Performance of
AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).

Self-play games are generated by using the latest parameters for this neural network, omitting
the evaluation step and the selection of best player.

AlphaGo Zero tuned the hyper-parameter of its search by Bayesian optimisation. In Alp-
haZero we reuse the same hyper-parameters for all games without game-specific tuning. The
sole exception is the noise that is added to the prior policy to ensure exploration (29); this is
scaled in proportion to the typical number of legal moves for that game type.

Like AlphaGo Zero, the board state is encoded by spatial planes based only on the basic
rules for each game. The actions are encoded by either spatial planes or a flat vector, again
based only on the basic rules for each game (see Methods).

We applied the AlphaZero algorithm to chess, shogi, and also Go. Unless otherwise speci-
fied, the same algorithm settings, network architecture, and hyper-parameters were used for all
three games. We trained a separate instance of AlphaZero for each game. Training proceeded
for 700,000 steps (mini-batches of size 4,096) starting from randomly initialised parameters,
using 5,000 first-generation TPUs (15) to generate self-play games and 64 second-generation
TPUs to train the neural networks.1 Further details of the training procedure are provided in the
Methods.

Figure 1 shows the performance of AlphaZero during self-play reinforcement learning, as
a function of training steps, on an Elo scale (10). In chess, AlphaZero outperformed Stockfish
after just 4 hours (300k steps); in shogi, AlphaZero outperformed Elmo after less than 2 hours
(110k steps); and in Go, AlphaZero outperformed AlphaGo Lee (29) after 8 hours (165k steps).2

We evaluated the fully trained instances of AlphaZero against Stockfish, Elmo and the pre-
vious version of AlphaGo Zero (trained for 3 days) in chess, shogi and Go respectively, playing
100 game matches at tournament time controls of one minute per move. AlphaZero and the
previous AlphaGo Zero used a single machine with 4 TPUs. Stockfish and Elmo played at their

1The original AlphaGo Zero paper used GPUs to train the neural networks.
2AlphaGo Master and AlphaGo Zero were ultimately trained for 100 times this length of time; we do not

reproduce that effort here.

4

(∼300k steps in 4 hours) (∼110k steps in 2 hours) (∼165k steps in 8 hours)

Silver et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017.



Solvers + Learners: Generalized planning

Synthesis for classes of similar problems rather than for single instances

• Learn general abstraction for whole class

• Solve abstraction with solver (may need FOND solver)

• Obtained policy works for any instance in class



Example: General abstraction for Gripper

B

A

1 2 3

4

Features:

– X = robot-at-destination-room, B = #balls-in-other-room

– C = #balls-being-carried, G = #free-grippers

Abstract actions:

– Pick = {¬X, B > 0, G > 0} 7→ {B↓, G↓, C↑}
– Drop = {X, C > 0} 7→ {C↓, G↑}
– Leave-destination-room = {X, C = 0, G > 0} 7→ {¬X}
– Go-destination-room-fully-loaded = {¬X, G = 0, C > 0} 7→ {X}
– Go-destination-room-half-loaded = {¬X, B = 0, G > 0, C > 0} 7→ {X}



Example: General abstraction for Gripper

B

A

1 2 3

4

Features:

– X = robot-at-destination-room, B = #balls-in-other-room

– C = #balls-being-carried, G = #free-grippers

Starting with X = true:

While B > 0 ∨ C > 0 do:

While X ∧ C > 0 do: Drop

If X ∧B > 0 then: Leave

While B > 0 ∧G > 0 do: Pick

If C > 0 ∧G = 0 then: Go-destination-room-fully-loaded

Elsif C > 0 ∧G > 0 : Go-destination-room-half-loaded



Current and future work

• Learners:

– Learn states, variables and objects from traces
– Learn abstractions from (learned) state representation
– Learn abstractions from non-symbolic traces (images)

• Solvers:

– Devise more efficient solvers
– Identify tractable subclasses of interesting problems

• Combine learners and solvers into “full pipeline”: from (symbolic or
non-symbolic) traces to generalized controllers

(trace = interleaved sequence of actions and observations: 〈a0, z0, a1, z1, . . .〉)



Learning state-transition diagrams from traces

ST-diagram: Labeled directed graph

– vertices are states

– labeled arrows are transitions triggered by actions

Learning done by solving graph coloring problem with SAT



Example: Learning ST-diagram in Gripper

Observable tokens: 3-bit strings with components for B > 0, C > 0, G > 0
denoted by b, c, and g

Action labels: Move, Pick, Drop

Traces (sample): 1,510 traces from single instance with 2 balls and 1 gripper

b-g Move b-g Move b-g Move b-g Move
b-g Move b-g Move b-g Move b-g Move b-g
b-g Move b-g Move b-g Move b-g Move b-g Move
b-g Move b-g Pick bc- Drop b-g Pick
b-g Move b-g Pick bc- Drop b-g Pick bc-
b-g Move b-g Pick bc- Drop b-g Pick bc- Drop
b-g Move b-g Pick bc- Drop b-g Pick bc-
b-g Move b-g Pick bc- Move bc- Drop b-g Move b-g Move
b-g Move b-g Move b-g Move
b-g Move b-g Move b-g Move b-g
b-g Move b-g Pick bc- Move bc- Drop b-g Move b-g Move b-g
b-g Move b-g Pick bc- Move bc- Drop b-g Move b-g Move b-g Move
b-g Move b-g Pick bc- Move bc- Drop b-g Move b-g Move b-g Move b-g
b-g Move b-g Pick bc- Move bc- Drop b-g Move b-g Move b-g Move b-g Move
b-g Move b-g Pick bc- Move bc- Drop b-g Move
...



Example: Learning ST-diagram in Gripper

State space: 10 states, and 18 transitions; “linear shape”

s0 s1Move
Move

s2Pick
Drop

s3Move
Move

s4Drop
Pick

s5Move
Move

s6Pick
Drop

s7Move
Move

s8Drop
Pick

s9Move
Move

With a smaller sample containing 422 traces only, get incomplete diagram:

s0 s1Move
Move

s2Pick
Drop

s3Move
Move

s4Drop
Pick

s5Move
Move

s6Pick
Drop

s7

Move

Drop

Move



Planning and learning at UC3M

Planning and Learning Group (PLG) at Departamento de Informática:

– Head of group: Daniel Borrajo Millán

– Carlos Linares López

– Fernando Fernández Rebollo

– Susana Fernández Arregui

– Raquel Fuentetaja Pizán

– Angel Garćıa Olaya

– Yolanda Escudero



Wrap up

– Two main approaches in AI for developing autonomous agents

– Solver-based approach:

• Automatic synthesis of controller from model
• Requires model and solver
• Synthesis task is intractablee
• Usually no pre-processing; at each decision point, the process of decision

making requires time

– Learner-based approach:

• Doesn’t require model
• Requires features and lots of training data
• Controller is directly learned form data; afterwards, decision making is fast

– Combining the two approaches:

• Intrinsic limitations of each approach can be overcomed
• Very successful examples
• Still requires some structure: states, action labels, and observation tokens

– Future work:

• Learn state structure and control directly from traces


